Symbolic model checking of multi-agent systems using

OBDDs

Franco Raimondi, Alessio Lomuscio
Department of Computer Science
King’s College London
London, UK
email: {franco,alessio}@dcs.kcl.ac.uk

Abstract

We present an algorithm for symbolic model checking temporal-epistemic properties of
multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a
technique for the translation of interpreted systems into boolean formulae, and then present
a model-checking algorithm based on this translation. The algorithm is tailored for the use
of OBDDs, as they offer a compact and efficient representation for boolean formulae.

1 Introduction

Theoretical investigations in the area of multi-agent systems (MAS) have traditionally focused on
the use of MAS as a specification tool for complex systems. Various logics have been explored to
give formal foundations to MAS, particularly for mental attitudes [9] of agents, such as knowledge,
belief, desire, etc. To consider the temporal evolution of these attitudes, temporal logics such as
CTL and LTL [8] have been included in MAS formalisms, thereby producing combinations of
temporal logic with, for example, epistemic, doxastic, and deontic logics.

Although the problem of specifying systems’ behaviour is worth investigating, the problem of
verification of MAS must also be taken into account to ensure that systems behave as they are
supposed to. Model checking is a well-established verification technique for distributed systems
specified by means of temporal logics [5, 8]. The problem of model checking is to verify whether
a logical formula ¢ expressing a certain required property is true in a model M representing the
system, that is establishing whether or not M |= ¢. This approach can also be applied to MAS,
where in this case M is a semantical model representing the evolutions of the MAS, and ¢ is a
formula expressing temporal-intentional properties of the agents. Recent work along these lines
includes [15], in which M. Wooldridge et al. present the MABLE language for the specification of
MAS. In this work, modalities are translated simply as nested data structures (in the spirit of [1]).
Bordini et al. [2] use a modified version of the AgentSpeak(L) language [12] to specify agents and
to exploit existing model checkers. Both the works of M. Wooldridge et al. and of Bordini et al.
translate the specification into a SPIN specification to perform the verification. The works of van
der Meyden and Shilov [13], and van der Meyden and Su [14], are concerned with verification of
interpreted systems. They consider the verification of a particular class of interpreted systems,
namely the class of synchronous distributed systems with perfect recall. An algorithm for model
checking is introduced in the first paper using automata, while in [14] verification is performed
for a specific class of temporal specifications and interpreted systems; also, [14] suggests the use
of OBDDs for this approach.

The aim of this paper is to present an algorithm for model checking epistemic and temporal
properties of interpreted systems [6]. This differs from previous work by treating all the modali-
ties explicitly in the verification process. We do temporal-epistemic model checking because the

verification of epistemic properties (and their evolution with time) is crucial in many scenarios,
including communication protocols and security protocols.

Interpreted systems are a formalism for representing epistemic properties of MAS and their
evolution with time. The algorithm that we present does not involve the translation into existing
model checkers, it is fully symbolic, and it is based on boolean functions. Boolean functions can
be represented and manipulated efficiently by means of OBDDs, as it has been shown for CTL
model checking [10].

The rest of the paper is organised as follows: in Section 2 we briefly review OBBDs-based model
checking and the formalism of interpreted systems. In Section 3.1 we present the translation of
interpreted systems into boolean formulae, while in Section 3.2 we introduce an algorithm based
on this translation. We conclude in Section 4.

2 Preliminaries

2.1 Model checking and OBDDs

Given a model M and a formula ¢ in some logic, the problem of model checking involves estab-
lishing whether or not M |= ¢ holds. Tools have been built to perform this task automatically,
where M is a model of some temporal logic [5, 8, 7]. SMV [10] and SPIN [7] are two well-known
model checkers; in these tools the model is given indirectly by means of a program P. It is not
efficient to build explicitly the model M represented by P, because M has a size which is exponen-
tial in the number of variables of P (this fact is known as the state explosion problem). Instead,
various techniques have been developed to perform symbolic model checking, which is the problem
of model checking where the model M is not described or computed in extension. Techniques for
symbolic model checking include using automata [7] and OBDDs [3] for the representation of all
the parameters needed by the algorithms. For the purpose of this paper, we will only consider
symbolic model checking of the temporal logic CTL using OBDDs [4].

OBDDs (Ordered Binary Decision Diagrams) are an efficient representation for the manipu-
lation of boolean functions. In [3] algorithms are provided for the manipulation and composition
of OBDDs. The idea of CTL model checking using OBDDs is to represent states of the model
and relations by means of boolean formulae. Moreover, CTL formulae are represented by sets of
states, i.e. by boolean formulae. Model checking is then performed by composing OBDDs, or by
computing fix-points of operators on OBDDs (see [8] for details). By means of this approach large
systems have been checked, including hardware and software components.

2.2 Interpreted Systems

An interpreted system is a semantic structure representing the temporal evolution of a system
of agents. Each agent ¢ (i = {1,...,n}) is characterised by a set of local states L; and by a set
of actions Act; that may be performed. Actions are performed in compliance with a protocol
P; : L; — 24¢; notice that this definition allows for non-determinism. A tuple g = (I1,...,1,) €
Ly x...,Ly,, where l; € L; for each i, is called a global state and gives a snapshot of the system.
Given a set I of initial global states, the evolution of the system is described by n evolution
functions': ¢; : L1 X ...x Ly, X Acty % ... x Act, — L; In this formalism the environment in which
agents “live” is usually modelled by means of a special agent E; we refer to [6] for more details.

The set I, t; and the protocols P; generate a set of computations (also called runs). Formally,
a computation 7 is a sequence of global states © = (go, g1, - - .) such that go € I and, for each pair
(9j,9j+1) € 7, there exists a set of actions a enabled by the protocols such that ¢(g;,a) = g;t1-
G C (L; x ... x Ly) denotes the set of reachable global states.

Interpreted systems semantics can be used to interpret formulae of a temporal language en-
riched with epistemic operators [6]. Here we assume a temporal tree structure to interpret CTLK

1 This definition is equivalent to the definition of a single evolution function t as in [6].

formulae [11]. The syntax of CTLK is defined in terms of a countable set of propositional variables
P ={p,q,...} and using the following modalities:

pu=p|-|eVe| EXp|EGyp | E(eUyp) | Kip

The modalities AX, EF, AF, AG, AUare derived in the standard way. Further, given a set of
agents I', two group modalities can be introduced: Ery and Cry denote, respectively, that every
agent in the group knows ¢, and that ¢ is common knowledge in the group (see [6] for details).
Given a valuation function V : P — 29 satisfaction in a global state g is defined as follows:
gFEP iff geV(p),
gE e iff g o,

gE@ Ve il gl org =g,
gEEXp iff there exists a computation 7 such that 7o = g and m = ¢,

g E EGy iff there exists a computation 7 such that mo = g and m; |= ¢ for all i > 0.
g E E(pUvy) iff there exists a computation 7 such that 7o = g and a k > 0
such that m = ¢ and m; = @ for all 0 < i < k,

9 Kip iff Vg'€G, g~y implies g’ |= ¢
g E Ery iff Vg' €@, g~F g implies ¢’ | ¢
g E Cryp iff Vg' €@, g~¢ g implies ¢' | ¢

where 7; denotes the global state at place j in m. ~; is an epistemic accessibility relation for
agent i defined by: g ~; ¢' iff [;(9) = l;(¢'), i-e. if the local state of agent ¢ is the same in g and
in g’ (notice that this is an equivalence relation). g ~F ¢' iff g ~; ¢’ for some i € T. ~§ is the
reflexive transitive closure of ~£.

3 A model checking algorithm for CTLK

The main idea of this paper is to use algorithms based on OBDDs to verify temporal and epistemic
properties of multi-agent systems, in the spirit of traditional model checking for temporal logics.
To this end, it is necessary to encode all the parameters needed by the algorithms by means of
boolean functions, and then to represent boolean functions by means of OBDDs. As this last step
can be performed automatically using software libraries that are widely available, in this paper
we introduce only the translation of interpreted systems into boolean formulae (Section 3.1). In
Section 3.2 we present an algorithm based on this translation for the verification of CTLK formulae.

3.1 Translating an interpreted system into boolean formulae

The local states of an agent can be encoded by means of boolean variables (a boolean variable is
a variable that can assume just one of the two values 0 or 1). The number of boolean variables
needed for each agent is nv(i) = [loga|L;|]. Thus, a global state can be identified by means of
N = > nwv(i) boolean variables: g = (v1,...,vn). The evaluation function V associates a set

of globzal states to each propositional atom, and so it can be seen as a boolean function. The
protocols, too, can be expressed as boolean functions (actions being represented with boolean
variables (ay, .. .,aps) similarly to global states).

The definition of ¢; in Section 2.2 can be seen as specifying a list of conditions c¢;1,...,cix
under which agent ¢ changes the value of its local state. Each ¢; ; has the form “if [conditions on
global state and actions] then [value of “next” local state for ¢]”. Hence, t; can be expressed as a
boolean formula as follows:

ti=ci1®...0cip

where @ denotes exclusive-or. We assume that the last condition c¢; 1, of ¢; prescribes that, if none
of the conditions ¢; ;(j < k) is true, then the local state for ¢ does not change. This assumption is
key to keep compact the description of an interpreted system, as in this way only the conditions
that are actually causing a change need to be listed.

The algorithm presented in Section 3.2 requires the definition of a boolean function Ry(g,g')
representing a temporal relation between g and ¢g’. R:(g,g') can be obtained from the evolution

function t; as follows. First, we introduce a global evolution function #:

t= /\ t; = /\ (Ci,l 69---@01',195)

i€{l,...,n} i€{l,...,n}

Notice that ¢ is a boolean function involving two global states and a joint action a = (aq, .. -, ar)-
To abstract from the joint action and obtain a boolean function relating two global states only,
we can define R; as follows:
Ri(g,¢') iff Ja € Act : t(g,a,qg") is true and each local action a; € a is enabled by
the protocol of agent 7 in the local state [;(g).
The quantification over actions above can be translated into a propositional formula using a
disjunction (see [10, 5] for a similar approach to boolean quantification):

Ri(g,9") = \/ [(t(g,a,9") A P(g,0)]
a€Act

where P(g,a) is a boolean formula imposing that the joint action a must be consistent with the
agents’ protocols in global state g. R; gives the desired boolean relation between global states.

3.2 The algorithm

In this section we present the algorithm SATcrrk to compute the set of global states in which
a CTLK formula ¢ holds, denoted with [[¢]]. The following are the parameters needed by the
algorithm:

e the boolean variable (v1,...,vn) and (aq,...,anr) to encode global states and joint actions;
e n boolean functions P;(vy,...,vN,a1,-..,apn) to encode the protocols of the agents;
e the boolean function R; to encode the temporal transition;

e the boolean function RE to encode ~£, defined by RE = A R,.
ier

e the function V(p) returning the set of global states in which the atomic proposition p holds.
We assume that the global states are returned encoded as a boolean function of (vq,...,vN);

e a set of initial states I, encoded as a boolean function;

o the set of reachable states G. This can be computed as the fix-point of the operator 7 =
(I(g)V3g'(Ri(g',9) ANQ(g")) where I(g) is true if g is an initial state and () denotes a set of
global states. The fix-point of 7 can be computed by iterating 7(#) by standard procedure
(see [10]);

e 1 boolean functions R; to encode the accessibility relations ~; (these functions are easily
defined using equivalence on local states of G).

The algorithm is as follows:

SATerrk(e) {
 is an atomic formula: return V(yp);
@ is =y return G\ SATcorrk (¢1);
© is 1 A pa: return SATorLr(p1)N

SATcrLi(92);

pis EX¢q: return EXornk(p1);
@ is E(p1Ups): return EUcrri(91,92);
¢ is EGo;: return EGeorrni(¢1);
¢ is K;p1: return Kerri(e1,1);
¢ is Ergy: return Eornr(¢1,T);
p is Crpy: return CCTLK((PlaF)Q

In the algorithm above, EX¢rrk, EGerrk, EUcrrk are the standard procedures for CTL
model checking [8] in which the temporal relation is R; and, instead of temporal states, global states
are considered. The procedures Korrk(p,1) and Ecrri(,T) and Corpi(e,T) are presented
below.

Kerrr(p,i) {
X == SATCTLK(_‘SO)g
Y = {g € G|Ki(g,9') and ¢' € X}
return —Y;

}

Ecrrk(p,T) {
X = SATCTLK(—lQO);
Y = {9 € G|Rf(g,¢') and ¢' € X}
return —Y;

}

Corrk(p,T) {
X = SATC’TLK(‘P);

Y =G;
while (X =Y) {

X=Y;

Y = {g€ G|RE(g9,9') and ¢’ € Y and ¢' € SATcrrr(p)}
return Y;

}

The procedure Corr i (¢,T') is based on the equivalence [6]
Cre = Er(¢ A Cryp)

which implies that [[Cr¢]] is the fix-point of the (monotonic) operator 7(Q) = [[Er(¢ A (Q))]].
Hence, [[Cry]] can be obtained by iterating 7(G).

Notice that all the parameters can be encoded as OBDDs. Moreover, all the operations inside
the algorithms can be performed on OBDDs as presented in [3].

To check that a formula holds in a model, it is enough to check whether or not the result of
SATcrr K is equivalent to the set of reachable states.

4 Conclusion

Temporal logic model checking using OBDDs [10] is one of the most successful techniques for the
verification of distributed systems. In the last decade, this methodology has been used for the
verification of both software and hardware components.

In this paper we have presented an algorithm for the verification of temporal-epistemic prop-
erties based on the manipulation of boolean functions. The methodology presented here encodes
directly a MAS (specified in the formalism of interpreted systems) by means of boolean formulae;
then, the algorithm allows for the (fully symbolic) verification of temporal-epistemic properties.
Moreover, the algorithm allows for the verification of two group modalities (Er and Cr) and is
not restricted to a particular class of interpreted systems, nor to a particular class of formulae.
We are currently implementing the algorithm and in the future we aim at testing epistemic and
temporal properties of various scenarios from the MAS literature. This will help in evaluating the
efficiency of the algorithm.

References

[1]

[2]

[3]

[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems. Journal
of Logic and Computation, 8(3):401-423, June 1998.

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking AgentSpeak. In
Proceedings of the Second International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’08), July 2003.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transaction
on Computers, pages 677-691, August 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 10%° states and beyond. Information and Computation, 98(2):142-170, June 1992.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. The MIT Press, Cambridge, Massachusetts, 1995.

G. J. Holzmann. The model checker spin. IEEE transaction on software engineering, 23(5),
May 1997.

M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge, England, 2000.

John McCarthy. Ascribing mental qualities to machines. In Martin Ringle, editor, Philo-
sophical Perspectives in Artificial Intelligence, pages 161-195. Humanities Press, Atlantic
Highlands, New Jersey, 1979.

K. McMillan. Symbolic model checking: An approach to the state explosion problem. Kluwer
Academic Publishers, 1993.

W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via model
checking. Fundamenta Informaticae, 55(2):167-185, 2003.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. Lecture
Notes in Computer Science, 1038:42—77, 1996.

R. van der Meyden and N. V. Shilov. Model checking knowledge and time in systems with per-
fect recall. FSTTCS: Foundations of Software Technology and Theoretical Computer Science,
19, 1999.

R. van der Meyden and Kaile Su. Symbolic model checking the knowledge of the dining
cryptographers. Submitted, 2002.

Michael Wooldridge, Michael Fisher, Marc-Philippe Huget, and Simon Parsons. Model check-
ing multi-agent systems with MABLE. In Maria Gini, Toru Ishida, Cristiano Castelfranchi,
and W. Lewis Johnson, editors, Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’02), pages 952-959. ACM Press, July
2002.

