Verification in multi-agent systems

Franco Raimondi
Department of Computer Science
King’s College London
London
franco@dcs.kcl.ac.uk

Abstract

Multi-agent systems are often taken as a paradigm in the specifica-
tion of complex systems because of their power in the abstraction from
implementation details. Different kinds of modal logics have been used
to model agents’ knowledge - beliefs - desires, and their evolution over
time. In this report I investigate how model checking techniques can be
applied to some problems of verification in multi-agent systems. I review
briefly th literature for multi-agent systems logics, and for model check-
ing. Also, I present results achieved in the verification of non-temporal
epistemic properties of two examples, encoded in the formalism of in-
terpreted systems: the bit transmission problem and the protocol of the
dining cryptographers.

Contents

1

2

Introduction

Mathematical preliminaries

2.1
2.2
2.3
2.4
2.5
2.6

Syntax
Logics o .
Possible worlds semantics
Standard completeness proofs
Multimodal logics
Temporal logics
261 LTL
26.2 CTL

Review of multi-agent systems theories

3.1
3.2
3.3
3.4
3.5
3.6

Cohen and Levesque’s intention logic
Rao and Georgeff’s BDI logic
Benerecetti, Giunchiglia and Serafini’s MATL
Wooldridge’s LORA
Interpreted systems

Extending interpreted systems with deontic operators

Verification in MAS

4.1

4.2

Model checking techniques
4.1.1 Model checking with SMV
4.1.2 Model checking with SPIN
4.1.3 Bounded Model Checking
Model checking MAS: the state of the art

Research plan

Examples

6.1
6.2

6.3

The bit transmission problem
The bit transmission problem with faults
6.2.1 Faulty receiver -1
6.2.2 Faulty receiver —2
The protocol of the dining cryptographers

Results obtained so far

7.1

Verification of the bit transmission problem

7.2 Verification of the protocol of the dining cryptographers

Conclusion

17

19
19
22
22
23
25

28
29
30

32

1 Introduction

The concept of rational agent has been adopted by many disciplines, including
economy, philosophy, computer science and mathematics. One of the reason for
this is that we naturally ascribe “mental qualities” to complex systems. Quoting
from [28] (cited in [41, 20]):

“To ascribe certain beliefs, knowledge, free will, intentions, con-
sciousness, abilities or wants to a machine or computer program is
legitimate when such an ascription expresses the same information
about the machine that it expresses about a person. It is useful when
the ascription helps us understand the structure of the machine, its
past or future behaviour, or how to repair or improve it. [...] As-
cription of mental qualities is most straightforward for machines of
known structure such as thermostats and computer operating sys-
tems, but is most useful when applied to entities whose structure is
incompletely known”.

In the past twenty years, various logical theories have been developed to
formalise knowledge, beliefs, desires, intentions and other intentional attitudes
(in the sense of [11]) of rational agents. Such logics include Cohen and Levesque’s
theory of intention [10], Rao and Georgeff BDI architecture [16], Wooldridge’s
Logic for Rational Agents (LORA, [38]), and interpreted systems by Fagin,
Halpern, Moses and Vardi [12].

In my research I am interested mainly in the formalisation of the knowledge
of an agent, and its evolution over time. Indeed, epistemic logics can be used to
capture properties of distributed systems and, in particular, to express desired
behaviour of protocols [15]. In this report I shall use the formalism of interpreted
systems [12] to represent multi-agent systems (MAS) and to reason about their
epistemic properties. Interpreted systems provide a computationally grounded
theory of agency. The notion of computationally grounded theory of agency was
introduced by M. Wooldridge in [39] to denote a theory that can be interpreted
in terms of some concrete computational model.

Though J. Halpern and M. Vardi suggested the use of model checking tech-
niques for the verification of multi-agent systems in 1991 [14], it is only recently
that results along these lines have been achieved [1, 22, 32, 40, 3, 31, 21, 36].
This research aims at making a contribution towards solving the problem of the
verification of MAS. T argue that existing model checking techniques and tools
for temporal logics can be extended to take into account other modalities that
are commonly used to model MAS.

The rest of the report is organised as follows. I begin with some mathemat-
ical preliminaries (Section 2) and with the objectives of my research (Section 5.
In Section 3 I review various theories for the formalisation of MAS, with a de-
tailed introduction to interpreted systems. In Section 4 I first present model
checking techniques, and then I analyse different approaches to the problem
of model checking MAS. In Section 6 I introduce two examples of multi-agent

systems: the bit transmission problem and the protocol of the dining cryptog-
raphers. Section 7 lists the results obtained so far. I conclude in Section 8 by
evaluating the results and by sketching possible evolutions of my the research.

2 Mathematical preliminaries

In this section I present a brief overview of the modal logic formalism that I
am going to use in the report. This overview is taken mainly from [13] and [7],
where all the proofs that are not reported here can be found.

2.1 Syntax

Let P be a countable set of atomic formulae, usually denoted p,q, ... The lan-
guage of propositional modal logic £ is defined by the the set of formulae ¢ € L:

¢ == pl=plp1r A pa|Op

Other connectives are introduced as usual. In particular, Cp = —~O-p, L =
pA—p,and T = — L. Possible readings of Oy are “It is necessarily true that ¢”,
“It will always be true that ¢”, “It ought to be that ¢”, “It is known that ¢”.
In the following I shall use other symbols for the modal operator O, including
K (to be read “it is known that”) and O (to be read “it ought to be that”).

2.2 Logics

By schema I mean a set of formulae all having the same syntactic form. For
example, the schema OA — A is the set of formulae
{OB — B: B € L}. A logic is any set L € £ such that

e L includes all tautologies

e L is closed under Modus Ponens, i.e.
if AJA— B €L, then B € L.

Members of L are called theorems and I write by, ¢ if ¢ € L.
A logic is normal if it contains the schema

K:O(A - B)—» (0A — OB)
and is closed under necessitation, i.e.
if by, A, then b, OA

The smallest normal logic is denoted with K!. Following standard con-
ventions, I denote with KXj ...X,, the smallest normal logic containing the
schemata Xj ... X,; these schemata are also called the azioms of the logic. Ta-
ble 1 lists the names of some commonly used axioms. Table 2 lists the names
of some commonly used logics.

INotice that I use here the same symbol to denote a schema and a logic. It should be clear
from the context which is the intended meaning.

04 - CA
0OA— A

O0A - 0OO0A
-OA — O-0A4

o =8

Table 1: Some common names for axioms.

Name Axioms
S4 KT4
S5 KT5

Table 2: Some common names for logics.

2.3 Possible worlds semantics

A frame F is a pair F' = (W, R) where W is a non-empty set of worlds, or
possible states, and R is a binary relationon W, RC W x W. A model M is a
pair M = (F,V) where F is a frame and V is a function V : P — 2W (P is the
set of atomic formulae, see above). V assigns to each atomic formula a subset
of W; V(p) is the set of worlds in which p has the value “true”.
I write
My e

to denote that ¢ is true (or, equivalently, ¢ holds) in model M at point w € W.
k= is defined inductively as follows:

MEyp iff weV(p)

ME,T

MEw (pAy) it My pand M=y ¢

M =, Op iff for all w' € W, wRw' implies M =, ¢

I write M £, @ if it is not the case that M =, ¢.

A formula ¢ is true in a model M, denoted with M = ¢, it M |, ¢ for
every w € W. A formula is valid in a frame F, denoted with F |= ¢, if M = ¢
for all models F' = (M, V) based on F'.

Let C be a class of frames. A logic L is sound with respect to C if, for every
formula ¢, by, o implies C = ¢. L is complete with respect to C if C |= ¢ implies
Fr . L is determined by C if it is sound and complete with respect to C

2.4 Standard completeness proofs

Possible world semantics is particularly attractive because many modal logics
are determined by simple classes of frames (see Table 3). Generally, the proof
of soundness of a logic with respect to some class of frames is straightforward.
The proof of completeness is usually a bit more complicated and requires some
standard machinery, presented below.

Consider a logic L. Given a formula ¢ and a set I' C L of formulae, ¢ is
deducible from T, denoted with T" F ¢, if there exist y,...,1, € T such that

Logic Class of frames

K All frames
KD Serial frames
KT Reflexive frames
S4 =KT4 Transitive and reflexive frames

S5 =KT5 Transitive, reflexive and symmetric (i.e equivalence) frames

Table 3: Classes of frames.

Fay — (e = (.. = (Wn = @)...)). Aset T € L is consistent if T I/ 1. A set
I is mazimal if, for any ¢ € L, either p € ' or —~p € T'.

Theorem 2.1 (Lindebaum’s Lemma) Every consistent set of formulae can
be extended to a maximal consistent set

The canonical model of a logic L is a structure My, = (WL, RL, V1.) where
Wi = {w C £ : w is maximal},
wRrw' iff {p € L:0p € w} Cw',
VL@)Z{wEWL:pE’w}.

Theorem 2.2 For all formulae @,
ML |= %2 iff '_L 2

To show that a logic L is complete with respect to some class of frames C,
it is enough to prove that the frame Fi, underlying the canonical model M,
belongs to C. Indeed, if t/1, ¢, then ¢ is false in the canonical model My, by
Theorem 2.2, and hence is false in the canonical frame Fy,. This shows that
C | ¢ implies Fr, ¢. Determination of logics in Table 3 is proved using this
technique.

2.5 Multimodal logics

The syntax presented above can be extended to take into account more than
one modal operator. Namely, consider a countable set of propositional variables
P as above, consider ¢ = 1,...,n modal operators, and define formulae ¢ of this
multimodal language L as follows:

@ 2= plmplpr A pa| O

Possible world semantics is easily extended for this multimodal language. A
frame F = (W,R;), i = 1,...,n is a structure where W is a set of worlds and
R; C W are binary relations on W. A model is a pair M = (F,V) where V
is a valuation function as above. The definitions consistency and maximality
are unchanged, as well as the Lindebaum’s lemma. Canonical models can be
defined in a similar manner to prove the completeness of various logics.

2.6 Temporal logics
2.6.1 LTL

The language Lrrr of Linear-Time Logic (LTL, [19]) is defined over a set of
atomic formulae p,q,... € P as follows:

@ = pl=plpr A 2| Xo|U(p,)| F ()G ()

LTL formulae are interpreted over Kripke structures. A Kripke structure (K.S5)
is a triple (S, R, I) where S is a set of states, R C S x S is a transition relation
and I : S — 2% is an interpretation function. A path is a sequence of states in
S m =< mg,m,Ta,... > such that (m;,m;41) € R for all ¢ > 0. 7; denotes the
i-th state in path 7, and pi =< m;, Tiq1,... > is the “tail” of path 7 starting
at m;.

Satisfiability of a formula ¢ with respect to a path 7 is defined inductively

as follows:
Q ': p iff pEe 1(770)7
T iff o,
TEe1 Ve ff 7mE@ orwE s,
TEX(@) iff 7y,
7 (pUy) iff 7 | ¢ until ¥y, for all i < F,
7 | F(p) iff there is k such that 7% = ¢,
T = G(p) iff 7%= forall k> 0.
Notice that F(p) = TUyp, F(p) = G- (p), and G(p) = ~F-(y).

2.6.2 CTL

The language Lot of Computational Tree Logic (CTL, [29, 9]) is defined over
a set of atomic formulae p,q, ... € P as follows:

@ 1= pl=plor A pa| EX ()| E(@UY) | EG ().

CTL formulae are interpreted over branching-time structures, using the con-
cepts of path and state introduced for LTL.
Satisfiability of a formula ¢ in a state s is defined inductively as follows:
sEp iff pel(s),
sE-p it s,
sE@i Vs il s orskE e,
sE EX(p) iff There exists a path 7 such that mo = s and m |= ¢,
s = E(pUvy) iff There exists a path 7 such that 7o = s and a k > 0
such that 7 = ¢ and m; = @ for all 0 <4 < k&,
s = EG(p) iff There exists a path 7 such that 7o = s and 7; = ¢ for all ¢ > 0.
Other CTL operators can be derived, for example: EFp = E(TUp), AXp =
—EX~-p, and AGp = ~EF-g.

3 Review of multi-agent systems theories

Many different formalisms are available for reasoning about MAS; a detailed
review can be found in [41, 16]. Below I list the main characteristics of some
formalisms.

3.1 Cohen and Levesque’s intention logic

The key assumption of Cohen and Levesque is that intelligent agents must
achieve a rational balance between beliefs, goals, and intentions([10], p.214).
To this end, they introduce a first order multi-modal logic with four primary
operators: BEL, GOAL, HAPPENS and DONE ([10], p.222). The semantics
of BEL and GOAL is the usual Kripke semantics; the accessibility relation for
BEL is euclidean, transitive and serial; the accessibility relation for GOAL is
serial. Moreover, the GOAL relation is a subset of the BEL relation. Worlds in
the formalism are an infinite sequence of events.

Beside the temporal operators HAPPENS and DONE, there are other con-
structs similar to dynamic logic, such as “;” to denote a sequence of events and
“?” to denote a test action.

The standard temporal operators O (“always”) and < (“at some time”) are
defined as abbreviations:

¢ = Jz(Happens z;¢?); Op = O

Other constructs are derived from the basic operators; the most important
is persistent goal®:

(P-GOALip) = (GOAL i (LATER p)) A
(BEL i —p) A
[BEFORE((BEL i p) V (BEL i O-p))
—~(GOAL i (LATER p))]

which means that an agent 7 has p as a persistent goal if: ¢ has a goal that
p becomes true at some point in the future, and ¢ believes that p is currently
false, and i drops his goal only if i believes that the goal has been satisfied, or
i believes that the goal will never be satisfied.

Intentions to act are defined as follows?:

(INTEND i @) = (P-GOAL i
[DONE ¢ (BEL ¢ (HAPPENS a))7;q])
Notice that an agent drops an intention of doing an action only if the agent

believes that the action has been performed, or the agent believes that the
action cannot be performed.

2The definition of LATER and BEFORE is straightforward and can be found in the paper
3The similar definition for “intending that something becomes true” can be found in [10]

Condition Axiom

B Coup D Crup T (INTEND 7 E(p)) — (DES 7 E(?))(BEL 1 B(7))
B Cyu D Cous T (INTEND i A(p)) — (DES i A(¢))(BEL i A(p))
BCDCT (INTEND i) — (DES i ¢)(BEL i)
BND#0 (BEL i ¢) — —(DES i —¢p)

DNIT#0O (DES i ¢) - =(INTEND i —)

BNIZ#0 (BEL i ¢) » ~(INTEND ¢ —)

Table 4: Some Interaction conditions and corresponding axioms

3.2 Rao and Georgeff’s BDI logic

My presentation here follows the lines of [16]. Rao and Georgeff’s BDI propose
a family of logics based on branching time temporal logics CTL. Their logics
include the modal operators BEL, DES and INTEND for expressing beliefs,
desires and intentions. Beliefs correspond to information that an agent has
about the world. Desires correspond to states of affairs that an agent would
like to achieve. Intentions correspond to desires that an agent is committed to
achieve.

The semantics of BDI modalities is based on the standard Kripke semantics.
However, each world is itself a Kripke structure for CTL logic. Hence, a world
is a structure w =< T, R > where T is a non-empty set of time points and R
is a branching time structure on T'. A situation is a pair < w,t > composed by
a world and a time point. The accessibility relations B, D, Z for BEL, DES and
INTEND are defined on situations. The logics proposed by Rao and Georgeff
differ on the the interactions between modalities. Interaction between relations
correspond to axioms in the logic. For example, if D C Z, then for every agent,
i INTEND i ¢ — DES i .

But worlds are themselves structures, so one can also reason about interac-
tions on the structure of worlds. If w and w' are worlds, w C w' means that w
has the same structure of w', but fewer paths. Consider now two accessibility
relation R and R'. R is a structural subset of R', denoted with R C,, R/, if for
every R-accessible world w, there is an R'-accessible world w’ such that w C w'.
Similarly, R is a structural superset of R', denoted with R Cy,,p R', if w' C w.

Various BDI logical systems can be obtained from the interactions between
relations. See Table 4 for an example.

3.3 Benerecetti, Giunchiglia and Serafini’s MATL

MultiAgent Temporal Logic [1] is the composition of the temporal logic CTL
and the logic HML (Hierarchical MetaLogic) to represent beliefs, desires and
intentions.

HML is defined as follows. Let I be a set of agent, and O = {B,D,I} be a
set of symbols, one for each attitude. Let OI* = (O x I)*, i.e. each o € OI* is a
string representing a possible nesting of attitudes. Each a € OI* is called a view,
including the empty string e representing the view of an “external observer”.

An agent “is a tree rooted in the view that the external observer has of it”
(notice that the view that an agent has of another agent can be different from
the agent itself). A logical language L, is associated to each view a. Each
language is used to express what is true in the representation corresponding to
a. It is imposed that O;y is a formula of L, iff ¢ is a formula of Lp, -

The semantics of { L4 }ocor~ is given by means of the concept of tree. A tree
is a subset of the set of possible interpretation of a language L, denoted with
M. Namely, each interpretation is denoted with ¢, € M,, and a tree is a set
{ta}acor-- A compatibility relation T is a set of trees. A tree satisfies a formula
at a view iff the formula is satisfied by all the elements that the tree associates
to the view.

A Hierarchical MetaStructure (HM Structure) is a set of trees T on L, closed
under containment such that there is a t € T with t. # 0, if ¢, satisfies O;¢,
then to,, satisfies ¢, and if for all ' € T', t!, € ¢, implies that t,o, satisfies ¢ ,
then t, satisfies O;¢p.

MATL structures (i.e. models) are a particular kind of HM structures: each
language L, is a CTL language. This allows for the interpretation of formulae
of a language that includes BDI and temporal (CTL) operators.

3.4 Wooldridge’s LORA

LORA [39] can be viewed as an extension of the temporal logic CTL. LORA
has four main components: a classical first-order component, a BDI component,
a temporal component and an action component (in a dynamic logic style).

The BDI component is very similar to the Rao and Georgeff’s formalism
presented in Section 3.2. The state of an agent is defined by its beliefs, desires
and intentions, whose semantics is given via standard Kripke semantics, and
worlds are themselves branching time structures. LORA also contains terms to
reason about groups of agents.

The semantics of LORA is defined by means of models. A model for LORA
is a structure

M =<T,R,W,D, Act, Agt,B,D,Z,C,® >

where T is the set of all time points, R C T x T is a branching time relation over
T, W is a set of worlds over T (see Section 3.2), D =< D ag, D¢, Dgr, Dy > is
a domain, Act : R — D 4. associates an action with every relation in R, Agt :
D 4. — D 44 associates an agent with every action, B, D, T are the accessibility
relations, C' is an interpretation function for constants and ® is an interpretation
function for predicates. D, = {1,...,n} is a set of agents, D4, = {a,0/,...}
is a set of actions, Dg, is a set of non-empty subsets of D4, i.e. groups of
agents, Dy is a set of other individuals. Semantics for state and path formulae
is given using LORA models.

3.5 Interpreted systems

This section introduces the formalism of interpreted systems in some detail, as
presented in [25].

10

Consider n agents in a system and n non-empty sets Li,...,L, of local
states, one for every agent of the system. It is often convenient to represent
the Environment in which the agents “live” as an agent; under this assumption,
local states for the Environment will be denoted by Lg. Elements of L; will be
denoted by {4,11,1,15, Elements of Ly will be denoted by lg,l},

For every agent of the system and for the environment there is a set Act; and
Actg of actions that the agents and the environment can perform. Actions are
not executed randomly, but following particular specifications called protocols.
A protocol P; for agent i is a function from the set L; of local states to a
non-empty set of actions Act; (notice that, by considering sets of actions, the
protocol is allowed to be non-deterministic):

P;: L; — 24

A system of global states for n agents S is a non-empty subset of the cartesian
product Ly X ... x L, x Lg. A global state g of a system S is a tuple of the
form g = (ly,...,l,,lE). 1;(g) denotes the local state of agent i in global state
g- le(g) denotes the local state of the environment in global state g.

The evolution of the system can be modelled by means of a transition func-
tion 7 from global states and joint actions to global states:

T:SxAct = S

where Act = Acty X ... x Act,, X Actg is the set of joint actions for the system.

Intuitively this defines temporal flows on the set of global states. A run r is
a function from time to global states: r : IN — S. Hence, a run is a sequence
of global states obtained by applying the function 7 to global states and joint
actions. R denotes a set of runs; (r,m) denotes the global state of run r at time
m. Equivalently, I will write r(m) for (r,m). r;(m) denotes the local state of
agent 4 in the global state (r,m) = r(m).

Given a set of propositional variables P, an interpreted system of global
states is a pair IS = (R, h) where R is a set of runs and h : S — 2F is an
interpretation function; intuitively, h returns the propositional variables true in
a global state.

It is possible to associate a Kripke model Mg to each interpreted system
IS = (R, h), as follows ([12], p.111): Mg = (S,h,~1,...,~p), where S is the
set of global states that are reachable in some run r € R, h is the same evaluation
function than above, and ~1, ..., ~, are binary relations on S defined by s ~; s’
if 1;(s) = l;(s") (s,s" are global states of the form (r,m) and (r',m')). From this
correspondence it is possible to define the following:

(IS,r,m) = if (Mg,s) =

where (r,m) = s. That is: ¢ holds in the interpreted system IS in run r at time
point m if ¢ holds in the equivalent Kripke model. Hence, all the propositional
operators are easily defined; Epistemic modalities K; (one for each agent) are
interpreted as follows:

(IS,r,m) = K; ¢ if for all (r',m') (r,m) ~; (r',m') implies
(18,7, m) = .

11

I say that ¢ is valid in the interpreted system IS and I write IS | ¢ if
(IS,r,m) | ¢ for every (r,m) in IS. The resulting logic for modalities K;
is S5,,; this models agents with complete introspection capabilities and veridi-
cal knowledge [18].

Temporal operators can be added to this formalism. LTL-like operators are
defined in [12], p.115. In [21] the logic CTLK is built introducing CTL-like
operators in the formalism of interpreted systems.

3.6 Extending interpreted systems with deontic operators

The notion of interpreted systems can be extended to incorporate the idea of
correct functioning behaviour of some or all of the components [24].

Given n agents and n + 1 non-empty sets Gg,G1,...,Gn, a deontic system
of global states is any system of global states defined on Ly O Gg,...,L, D G,.
G is called the set of green states for the environment, and for any agent i, G;
is called the set of green states for agent i. The complement of G g with respect
to Ly (respectively G; with respect to L;) is called the set of red states for the
environment (respectively for agent i). The terms ‘green’ and ‘red’ are chosen as
neutral terms. The term ‘green’ can be read as ‘legal’, ‘acceptable’; ‘desirable’,
‘correct’, depending on the context of a given application.

Deontic systems of global states are used to interpret modalities such as the
following

(I1S,9) E O; ¢ ifforall g’ we have that l;(¢’) € G; implies
(IS,9') = o

O; ¢ is used to represent that ¢ holds in all (global) states in which agent 7 is
functioning correctly. Again, one can consider generated models (S, ~1,...,~y,
LR, ..., RY, 1), where the equivalence relations are defined as above and the
relations RY are defined by g RY ¢' if 1;(g') € G, with a standard modal logic
interpretation for the operators O;.

Knowledge can be modelled on deontic interpreted systems in the same way
as on interpreted systems, and one can study various combinations of the modal-
ities such as K; Oj, O; K;, and others. Another concept of particular interest
is knowledge that an agent 7 has on the assumption that the system (the en-
vironment, agent j, group of agents X) is functioning correctly. The (doubly
relativised) modal operator K 7 is used for this notion, interpreted as follows:

(IS,9) E I?fgo if for all ¢’ such that l;(g) = I;(¢g') and
l;(9") € G; we have that (IS, g') = ¢.

K ¢ may be read as expressing that agent ¢ knows ¢ (in the same information-

theoretic sense as is captured by K;) when agent j is functioning correctly.
Note that O; K; ¢ — K] ¢ is valid, but not the converse.

12

4 Verification in MAS

4.1 Model checking techniques

Given a program P, and a property that can be represented as a logical formula
 in some logic, model checking techniques allow for the automatic verification
of whether or not a model Mp, representing the program P, satisfies the formula
. In the last two decades there have been great advances in the effectiveness of
this approach thanks to sophisticate data manipulation techniques. Techniques
based on Binary Decision Diagrams (BDDs, [4]) have been used to develop
model checkers that are able to check large number of states ([5]). Alternative
approaches using automata have also been developed [37]. In the following
sections I present the two approaches and I introduce two widely used model
checkers: NuSMV and SPIN. The former is based on BDDs’, the latter on
automata.

4.1.1 Model checking with SMV

Bryant [4] introduced techniques and algorithms to manipulate boolean func-
tions. The idea is to represent boolean functions of the form f(z1,...,z,) as
a rooted, directed and a-cyclic graph, called Ordered Binary Decision Diagram
(OBBD). A function graph can often be “reduced” by eliminating redundant
vertices ([4], p.5). Given a fixed ordering of the variables z1,...,z,, it can
be shown that the reduced function graphs form a canonical representation for
Boolean functions®.

Algorithms for the manipulation of function graphs are given in the paper,
and it is shown that these algorithms have a time complexity proportional to
the size of graphs. Although in the worst case a boolean function could require
a graph whose size is exponential in the number of arguments, it is shown that
many functions have a more compact representation.

To see how these ideas can be applied in the verification of CTL models,
consider a model (S, R, L) for the logic CTL, where S is a set of states, R is the
transition relation and L is the valuation. Every CTL formula f is identified
with the set of states in which f is true, {s € S : s |E f}. It can be shown that
CTL operators can be characterised using fixed point operators ([5, 29]). For
instance,

EFp=py.(pV EXy)

EGp =vy.(p N EXy)
That is: the set of states in which EF'p is true is the least fixed point y of the
operator (p V EXvy), where each formula is identified with the corresponding

set of states. Analogously, the set of states satisfying EGp is the greatest fixed
point of the operator (p A EXy).

4In the sense that the reduced function graph is unique (up to isomorphism) for each
boolean function f.

13

Provided that the set of states S is finite ([29], p.21), the fixed points above
can be obtained as the limit of the following (finite) series:

EFp = U;(\y.(pV EXy))!(false)

EGp =n;(M\y.(p A EXy)) (true)

OBDD’s and the fixed point characterisation of CTL operators are the build-
ing blocks of symbolic model checking. The idea is to represent the set of states
S as a set of boolean vectors {0,1}", and the transition relation R as a boolean
function on states ([29], p.27). It is easy to derive an algorithm to compute the
set of states satisfying temporal operators, iterating the relevant operators, as
presented above (see [29, 5, 9] for details). Encoding states and transitions with
OBDD’s (i.e. symbolically) gives an effective solution to the so called state explo-
sion problem. This problem arises when the states in S are dealt with explicitly;
indeed, the size of S is exponential in the number of (boolean) variables.

SMV (Symbolic Model Verifier) is a tool developed from 1993 at Carnegie
Mellon University by Clarke, McMillan, and others. It is a software for checking
properties of finite state systems expressed in CTL temporal logic. SMV has an
input language to describe the temporal model, and uses OBDDs to represent
states and transitions.

For the purposes of my research, I will consider NuSMV [8], an implemen-
tation of SMV. The input language of NuSMYV allows for the specification of a
finite system with different levels of abstraction. In the simplest case, the input
language requires three main sections:

1. A section for variables declaration,
2. A section for variables initialisation,
3. A section for the description of the transition relation.

The following is an example of a NuSMV program.®:

MODULE main

VAR
request : boolean;
state : {ready, busy};
ASSIGN
init(state) := ready;
next(state) :=
case
state = ready & request = 1 : busy;
1 : {ready, busy};
esac;

Given the program above, NuSMV can then be used to create a model associated
with it, and then to model check temporal formulae. For example, if we were
to feed a NuSMYV checker with the CTL formula

AG((request=0) -> AF(state=ready))

NuSMV would produce a counterexample.

5From the NuSMYV tutorial, available at http://nusmv.irst.itc.it

14

4.1.2 Model checking with SPIN

Another approach to model checking involves the use of automata. Formally [30,
33], a Biichi automaton B = (Q, I,d, F') over an alphabet ¥ is given by a finite
set () of locations, a non-empty set I C () of initial locations, a transition
relation § C @ x X x @, and a set F C @ of accepting locations. A run of B
over an infinite w-word w = agay ... € X¥ is an infinite sequence p = qoq; - -
of locations ¢; € @ such that go € I and (gi,a;,¢i+1) € §. The run is accepting
if there exists some ¢ € F such that ¢; = ¢ holds for infinitely many i. The
language £(B) C X¥ it the set of w-words for which there exists some accepting
run p of B. A language L € ¥¢ is called w-regular iff L = £(B) for some
automaton B.

It is possible to prove [37] that, given an LTL formula ¢ built over a finite
set P of atomic propositions, one can build a Biichi automaton B, = (Q, 1,4, F')
over the alphabet X, where ¥ = 2% and |S| < 2°U%) | such that £(B,,) is exactly
the set of computations satisfying the formula .

Similarly ([33], p.18), given a state s of an LTL model, it is possible to
construct a Biichi automaton By, accepting just the words w, corresponding to
valid computation paths 7 starting at s.

Checking whether s = ¢ amounts to checking whether £(B;) C L(B,).
Equivalently, one can check whether £(B,) N £L(B,) = @. Three important
results from [37] and [30] are summarised below:

1. The emptiness problem for Biichi automata (i.e., the problem of determin-
ing for a given automaton B whether B accepts some word) is solvable in
linear time.

2. For a Biichi automaton B with n locations over alphabet X, there is a
Biichi automaton B with 20("°9(n) locations such that £(B) = X\ £(B).

3. Given a Biichi automaton A with n locations and a Biichi automaton B
with m locations, one can construct a Biichi automaton with 2nm states

that accepts £(A) N L(B).

From these results it is possible to derive that the time complexity for model
checking using automata is linear in the size of the model and exponential in
the size of the formula ¢ to be checked (see [30], p.18).

SPIN [17] is a model checker based on the theory of automata presented
above. The specification of the model is given via a graphical front-end called
XSPIN, using the PROMELA language. LTL formulae are typed in XSPIN. The
PROMELA code and the LTL formula are converted mechanically to Biichi au-
tomata, and the verification of the formula is performed following the procedure
presented above.

4.1.3 Bounded Model Checking

A different approach to symbolic model checking has been introduced recently
in [2]. This approach is based on SAT procedures (i.e. propositional decision

15

procedures): the idea is to reduce model checking for LTL to propositional
satisfiability.

Specifically, given an LTL temporal model M and a positive integer k, the
bounded semantics for a model M is defined considering computational paths
of length k; in symbols, (M, 7) = ¢ means that the formula ¢ is valid in the
model M along the path 7 with bound k. It is possible to prove ([2]) that, given
an LTL model M and an LTL formula ¢, (M, 7) | ¢ iff there exists an integer
k and a path © with (M, m) ¢ .

Bounded model checking can then be reduced to propositional satisfiability,
as follows. A propositional formula [M, ¢]i is built such that [M,] is satis-
fiable iff ¢ is valid along some path 7. To construct [M, ¢]i, a propositional
formula [M]y, is first defined to enforce a valid path. Then, the LTL formula ¢
is translated into a propositional formula [¢]x, and [M,] is obtained as the
conjunction of [M]y and [¢]x: [M, @)k = [M]k A [@]k-

It is possible to prove that [M, ¢ is satisfiable iff (M,) = ¢ for some 7
and some k ([2]).

Bounded model checking has been extended to CTL in [34].

4.2 Model checking MAS: the state of the art

The methodologies presented in Section 4.1 have been widely and successfully
used in the verification of temporal properties of hardware and software com-
ponents.

As the objective of my research is to verify properties of multi-agent systems,
the methodologies presented above can be taken as a starting point, but need
to be extended. Specifically, they are not designed to represent multi-agent
systems, and they allow for the verification of a single modality, the temporal
modality.

Different approaches have been proposed for the problem of verification in
MAS. In this section I summarise some of them.

1. In [40], M. Wooldrige et al. introduce the MABLE language to specify
a multi-agent system. Properties of the systems (i.e. logical formulae)
are expressed using a simplified version of LORA (see Section 3). Be-
liefs, desires and intentions of the agents are modelled using nested data
structures, following the ideas of Benerecetti, Giunchiglia and Serafini (see
Section 3). The MABLE compiler produces a PROMELA code from the
MABLE description, and logical formulae are translated into LTL formu-
lae suitable for SPIN. Similarly, in [3] Bordini et al. translate a multi-agent
system specification given in a particular language, AgentSpeak(F), into
PROMELA code. In general, these two works are concerned with the
verification of BDI attitudes and their evolution with time.

2. The problem of model checking knowledge and time is explored in [31]
by R. van der Meyden and N. Shilov. They consider a particular class of
interpreted systems: synchronous with perfect recall interpreted systems.
Perfect recall means that each agent keeps a complete record of all the

16

5

(local) states he passes through; formally, the local state r;(m) of agent i at
time m is a sequence of the form r;(m) = r;(0) ...r;(m). Here synchronous
means that if (r,u) ~; (r',v), then u = v. Besides complexity results
for the problem, an algorithm is given for model checking these class of
systems using Biichi automata.

. In [32], R. van der Meyden and K. Su describe how OBDD’s and symbolic

model checking techniques can be used for the verification of synchronous
with perfect recall interpreted systems by means of an example, the proto-
col of the dining Cryptographers (see Section 6). This approach is different
from the one at the previous point, as OBDD’s are used in place of Biichi
automata. Though limited to a particular class of interpreted systems,
this approach tries to use traditional model checking techniques in the
verification of multi-agent systems.

. In [15] W. van der Hoek and M. Wooldridge present a methodology to

model check knowledge and time. Their approach is based on interpreted
system and local propositions. Formally, given an interpreted system
I = (R,) (see Section 3.5), a proposition ¢ is said to be local to Agent i if
 is propositional (i.e. no modal operators appear in) and for all points
(r,u), (',0) in I, 3f (r,u) ~; (',0), then (I, (r,u)) = ¢ iff (1, (", 0)) = .
W. van der Hoek and M. Wooldridge prove that it is possible to translate a
modal formula involving knowledge operators into an LTL formula involv-
ing local propositions. This last formula is checked using SPIN. The main
problem with this approach is that the local propositions needed for the
translation into LTL cannot be computed mechanically, and must be pro-
vided by the user. Nevertheless, several properties of the bit transmission
problem (see Section 6) can be checked automatically ([15], p.11).

. More recently, A. Lomuscio and W. Penczek [21] extended an algorithm

for bounded model checking CTL formulae to include epistemic operators
in a logic called CTLK, based on interpreted systems semantics. The idea
is very similar in spirit to [2]: the model checking problem is reduced to
a SAT problem for a propositional formula [M, ¢];, where M is a model
of the logic CTLK, ¢ is a formula and & is a bound. The propositional
formula is the conjunction of two formulae [M,] = [M]x A [p]x: the
first formula constrains the model to be a correct model, while the second
formula translates the CTLK operators into propositional operators.

Research plan

Multi-agent systems have long been recognised as an important conceptualisa-
tion in the design and analysis of complex, distributed systems. These systems
include, for example, communication and security protocols. However, if the
multi-agent systems paradigm is to be used, being able to verify formally prop-
erties of multi-agent systems is a crucial element.

17

My research is concerned with the problem of verification in multi-agent
systems. I chose to concentrate on the formalism of interpreted systems to
describe multi-agent systems: this formalism focuses mainly on epistemic and
temporal operators and allows to reason about knowledge of an agent, com-
mon and distributed knowledge of a group of agents, and their evolution with
time [12]. Sergot and Lomuscio [23] extended interpreted systems by means of
deontic operators (deontic interpreted systems), thus allowing to reason about
the correct behaviour of single components. In the framework of interpreted
systems extended with deontic operators, I have two kind of results that I hope
to achieve by the end of my PhD:

e To provide a methodology to verify automatically properties of interpreted
systems,

e To extend the theoretical results of [23] and [20]

The works presented in the literature overview of Section 4.2 deal with var-
ious techniques for the formal verification of attitudes in multi-agent systems.
However, verification of epistemic properties is considered only in [31] and [32],
and for a limited class of interpreted systems. My aim is to consider a more
general class of deontic interpreted systems, and to allow for the verification of
epistemic and deontic modalities.

I have already obtained some results in the verification of non-temporal
epistemic and deontic properties of interpreted systems, and these results are
presented in Section 7. In the work carried out so far, my idea has been to
translate a specification of an interpreted system into an SMV program, so that
the set of reachable global states can be computed. From the set of reachable
global states it is possible to build the epistemic relations. All this process is
performed automatically. This allowed for the automatic verification of two
examples from the literature: the bit transmission problem and the protocol of
the dining cryptographers. These results have been presented in details in the
two papers in the Appendix.

My work-plan for the future is:

e To modify and extend the compilation process from an interpreted sys-
tem specification into SMV code. Ideally, this new compilation technique
would allow to verify epistemic and temporal operators using existing
tools, such as NuSMYV. I plan to explore the feasibility of this line of
research in the next 3 months.

e To explore the translation from interpreted systems into timed automata.
Indeed, there is a tool to verify temporal and epistemic modalities for
timed automata [27] using bounded model checking techniques. I plan to
explore this line of research in parallel with the compilation into SMV
code in the next 4 months.

e To explore the use of OBBD’s (or other model checking techniques) for
the verification of interpreted systems. This line of research is different

18

from the ones above, because it does not involve existing tools. My idea is
to follow the steps of [29]: translate global states and transition functions
into OBBD’s, and then verify properties by means of algorithms based
on OBDD’s manipulation. This line of research involves a theoretical
investigation that could take up to 6 months, possibly followed by a
software implementation.

e For all the lines of research presented above, I plan to investigate the
complexity of the problem of verification.

e In parallel with the previous points, and up to the end of my PhD, I plan
to include more examples of multi-agent systems verification.

Also, there are some theoretical issues related to the formalism of interpreted
systems that I would like to investigate:

e The completeness of S5, + 0; a0 — O103¢ [20]. The standard com-
pleteness proof using canonical models failed for this system, and I plan
to explore different completeness proof techniques for this issue.

e An axiomatisation for the K 7 operator [23).

I will investigate these issues in parallel with the research for the verification
problem in multi-agent systems, and I hope to obtain some results in the next
6 to 9 months.

6 Examples

In my research I would like to develop methodologies to model check epistemic
properties of multi-agent systems. A lot of research in the area of multi-agent
systems is theoretical, with just few examples. I think that it is important to
ground theory into examples, and this Section presents two scenarios: the bit
transmission problem and the protocol of the dining cryptographers, and how
these can be encoded in the formalism of interpreted systems.

6.1 The bit transmission problem

The bit-transmission problem [12] involves two agents, a sender S, and a receiver
R, communicating over a faulty communication channel. The channel may drop
messages but will not flip the value of a bit being sent. S wants to communicate
some information (the value of a bit) to R. One protocol for achieving this is as
follows. S immediately starts sending the bit to R, and continues to do so until
it receives an acknowledgement from R. R does nothing until it receives the
bit; from then on it sends acknowledgements of receipt to S. S stops sending
the bit to R when it receives an acknowledgement. Note that R will continue
sending acknowledgements even after S has received its acknowledgement. In-
tuitively S will know for sure that the bit has been received by R when it gets

19

an acknowledgement from R. R, on the other hand, will never be able to know
whether its acknowledgement has been received since S does not answer the
acknowledgement. There are three active components in the scenario: a sender,
a receiver, and a communication channel. It is convenient to see sender and
receiver as agents, and the communication channel as the environment. For the
sender S, it is enough to consider four possible local states. They represent the
value of the bit S is attempting to transmit, and whether or not S has received
an acknowledgement from R. Three different local states are enough to capture
the state of R: the value of the received bit, and € representing a circumstance
under which no bit has been received yet:

LS = {07]‘7 (07 G‘Ck)7 (]‘7a6k)}7 LR = {07]‘76}'

The environment requires four different local states, representing the possible
combinations of messages that have been sent in the current round, by S and
R, respectively. The four local states are:

Lg = {(.,.), (sendbit, .), (., sendack), (sendbit, sendack)},

where ‘.” represents configurations in which no message has been sent by the

corresponding agent. Global states for the system G are defined as G C Lg X
LR X LE

The set of actions Act; for every agent in the system can be modelled as
follows:

Acts = {sendbit(0), sendbit(1),\}, Actr = {sendack,A}.

Here X stands for no action.

The actions Actg for the environment correspond to the transmission of mes-
sages between S and R on the unreliable communication channel. It is assumed
that the communication channel can transmit messages in both directions si-
multaneously, and that a message travelling in one direction can get through
while a message travelling in the opposite direction is lost. (Alternatively, one
can think of a pair of unidirectional communication channels whose faults are
independent of one other.) The set of actions for the environment is

Actg = {S—R, S—, «R, -}

S—R represents the action in which the channel transmits any message success-
fully in both directions, S— that it transmits successfully from S to R but loses
any message from R to S, + R that it transmits successfully from R to S but
loses any message from S to R, and — that it loses any messages sent in either
direction.

The protocol Ps : Lg — 24¢ts for S can be defined as follows:

Ps(0) = sendbit(0), Ps(1) = sendbit(1),
Ps((0,ack)) = Ps((1,ack)) = A,

20

Final state | Transition condition

(0, ack) Ls =0 and Actg = sendack and Acty = S—R or
Ls =0 and Actg = sendack and Actg = <R
(1, ack) Lg =1 and Actg = sendack and Acty = S—R or

Ls =1 and Actr = sendack and Actgp = <R

Table 5: Transition conditions for S

Final state | Transition condition

0 Acts = sendbit(0) and Lr = € and Actg = S—R or
Acts = sendbit(0) and Lr = € and Actg = S—

1 Acts = sendbit(1) and Lg = € and Actg = S—R or
Actg = sendbit(1) and Lg = € and Actg = S—

Table 6: Transition conditions for R
(I omit brackets when writing singleton sets).
Similarly, for R:
Pr(e) = A, Pgr(0) = Pg(1) = sendack.
For the environment, a constant function can be used:
Pr(lg) = Actg = {S—R, S—, +R, -}, foralllg € Lg

The evolution of the system can be modelled by means of the evolution functions
for each agent. In [12] the evolution function is a function 7 : G x Act — G,
where Act = Actg x Actg x Actg is the set of joint actions for the system. For
example, the definition of 7 contains the following:

w((0,¢,(.,.)), (sendbit(0),\,S—R)) = (0,0, (sendbit,.)),
7((0,¢,(.,.)), (sendbit(0),\,S—)) = (0,0, (sendbit,.)),
m((0,€,(.,.)), (sendbit(0),\,«R)) = (0,¢, (sendbit,.)),

7((0,6,(.,.)), (sendbit(0),A,—)) (0,¢, (sendbit, .)),

Equivalently, in Table 5, 6, and 7 I list the conditions actually causing a transi-
tion. Let IS}, be the model obtained by following the process described above,
on which an appropriate set of propositional variables is interpreted in a natural
way®. For the example under consideration I shall want to check the following

61 assume the following:
(ISp,9) Ebit =0 if Ig(g9) =0, orls(g) = (0,ack)
(ISu,g) =bit =1 if Is(g) =1, or Ls(g) = (1, ack)
(ISp,9) = recbit if Igr(g) =1, orig(g) =0
(ISv,9) Erecack if lg(g) = (1,ack), orls(g) = (0, ack).

For example bit = 0 is true at a global state of the model if the local state of the sender is
either 0, or (0, ack).

21

Final state Transition condition

() Acts = X and Actg = A

(sendbit, .) Acts = sendbit(0) and Actgr = A or
Actg = sendbit(1) and Actg = A

(., sendack) Actg = X and Actg = sendack

(sendbit, sendack) | Acts = sendbit(0) and Actr = sendack or
Acts = sendbit(1) and Actgp = sendack

Table 7: Transition conditions for F

formulae:
ISy, |= recack — Kg(Kg (bit = 0) V K (bit = 1)) (1)
ISy, |= recbit — (K (bit = 0) V K (bit = 1)) (2)
ISy |= recack A (bit = 0) - Kg Kg (bit = 0) (3)

6.2 The bit transmission problem with faults

I analyse here the case in which agents do not behave as they are supposed
to. Two concrete examples are considered. In the first, the receiver may fail to
send an acknowledgement message when it receives a bit [26]. In the second,
the receiver R may send acknowledgements even when it is not supposed to,
i.e., when it has not yet received the value of the bit.

6.2.1 Faulty receiver — 1

This case is dealt with by considering a new protocol which extends the original
one. Two new local states are introduced for the receiver R. The local states
for the receiver R are now:

}-2 = {Oalaea (O,f),(l,f)}

The states (i, f) (i = {0,1}) are faulty states in which R received a bit but failed
to send an acknowledgement. If the receiver enters one of its faulty states, it can
nevertheless recover to a non-faulty state [24], by sending an acknowledgement
the next time round.

The protocol for the receiver R is modified as follows:

Pr(0) = Pg(1) = {sendack, A}
by extending the definition to cover also the faulty local states (0, f) and (1, f):
P((0, £)) = Ph((1,) = {sendack, A}

For this version of the problem, the system evolution function 7' is required to
be the same as in the basic version for actions conforming to protocols in non-
faulty states. For the other cases, 7' needs to cover the conditions under which

22

we move to a faulty local state for agent R, and then the outcome of transitions
originating from faulty local states for agent R. For example, the definition of 7/
contains, for all vg € Actg, unless stated otherwise (the definitions for bit = 1
are analogous):

7' ((0,0,(.,.)), (sendbit(0),\,vg)) =
(0,(0, f), (sendbit, .))
7TI(((07 G/Ck)a 0; ('7))7 (AJ)‘5’YE)) =
((0,ack), (0, f), (A, A))
7' ((0,(0,), (-,-)), (sendbit(0), A, vr)) =
(0,(0, f), (sendbit, .))
' ((1), (), (sendbit

0,(0,£), (- 0), sendack,vp)) =
((0, ack), , (sendbit, .) (vye € {S—R,«R})
(2 (0, 1), (), (sendbit

0), sendack,vg)) =
0, (sendbit, sendack)) (v € {S—,-})

Note that in the last two cases sending an acknowledgement in a faulty lo-
cal state puts R back into a fault-free local state—the record of the protocol-
violating fault is wiped out. For completeness:

' (((0,ack), (0, 1), (), M Ave)) = ((0,ack), (0, f), (A, N))
' (((0,ack), (0,£),(-;-)), (A, sendack,ve)) = ((0,ack),0, (A, sendack))

sz—\

Others cases for the definition of 7’ are similarly expressed.
Let IS}, be the model obtained by following the process described above’.
In the next Section it will be verified that:

IS}, = recbit — (K (bit = 0) V K (bit = 1)) (4)
IS}, | recack — Ks(KF (bit = 0) V Kg (bit = 1)) (5)
IS}, | recack A (bit = 0) — Kg Ky (bit = 0) (6)

6.2.2 Faulty receiver — 2

For this version of the problem a new local state for the receiver R is introduced,
namely (¢, f), and deontic concepts introduced in Section 3.6 are used. This is
the local state in which R did not receive a bit but nevertheless R sent an ac-
knowledgement. The local states (0, f) and (1, f) of R represent the case where
R has received the value of the bit and has sent an erroneous acknowledgement
at some time in the past. For S, since I am not admitting (for the purposes of
the example) the possibility of faults, its local states are all green. Thus:

L.’é = g’ = {07]‘7 (07 GCk)7 (17aCk)}7 »ISI' = @'

For the case of the environment, the possibility of faulty, or unreliable, behaviour
of the channel is already represented by the four kinds of transmit actions.

"The interpretation of the variables is similar.

23

‘Faults’ of the communication channel are not violations of the protocol under

examination. Accordingly, all local states of the environment are also green;
RY, =0, L', = GY%,, and:

% ={(..), (sendbit, .), (., sendack), (sendbit, sendack)}.

For R, local states are defined as follows:

r=10,Le}, Rp ={(0,1),(1, 1), (e, /)}, Ly = GR U Ry

The protocol functions of this deontic interpreted system are now defined. Given
that the two sets of local states for S and E have not changed, the functions
Pg and Pg can be kept as for the basic version. Pg ha to be extended, so that
it is defined also on the red local states of R.

Pi(e) = Pr(e) = A,
Py (0) = Pi(1) = Pgr(0) = Pr(1) = sendack

For the red local states Ry, = {(0, f), (1, f), (¢,)} we shall define

Pr((0, £)) = Pr((1, f)) = Pr((e, f)) = Actr = {sendack, A}

It remains to define the evolution function 7”. Essentially the definition of 7 is
extended by insisting that R’s local states will be red if R has sent an acknowl-
edgement, either in the current round or in the past, without having received
the bit first, and otherwise copy R’s transitions in , i.e., R will correctly store
the bit if it has received it and remain in the state € otherwise. First, the effects
of protocol-violating actions in green R states are specified. For the case where
the bit is 0 (the other can be done similarly) it is imposed that:

7" ((0,€,(.,.)), (sendbit(0), sendack, S—R)) =
((0,ack), (0, f), (sendbit, sendack))
7" ((0,€,(.,.)), (sendbit(0), sendack, S—)) =
(0,(0, f), (sendbit, sendack))
7"'((0,¢€,(.,.)), (sendbit(0), sendack, «+R)) =
((0,ack), (¢, f), (sendbit, sendack))
7' ((0,€,(.,.)), (sendbit(0), sendack, —)) =
(0, (¢,), (sendbit, sendack))

Note that in the first case above the result state is a faulty (red) state even
though communication has taken place, and that in the second and fourth cases
the result state is a faulty (red) state even though the erroneous acknowledge-
ment was not received by S.

Now the definition of # is extended so that 7' is defined also on red local
states for R. Once R is in a red state it is imposed that it will remain in a red

"

24

state, although it will correctly store messages, if received.

7" ((0, (e, f)), (-, .)), (sendbit(0), sendack, S—R)) =
((0,ack), (0, f), (sendbit, sendack))

7" ((0, (e, 1)), (-, .)), (sendbit(0), sendack, S—)) =
(0,(0, f), (sendbit, sendack))

7" ((0, (e, f)), (.,.)), (sendbit(0), sendack,«R)) =
((0,ack), (¢, f), (sendbit, sendack))

7T"((Oa (6, f))a ('a))a (sendbit(O), SendGCka _)) =
(0, (¢, f), (sendbit, sendack))

The other cases are omitted.

Let IS, be the model obtained in this example. Considering green and
red states the doubly relativised operator K B introduced in section 3.5 can be
interpreted. I want to verify that none of the epistemic formulae presented in
earlier sections hold in this version. In particular:

IS} |~ recack — Kg(Kg (bit = 0) V K (bit = 1)) (7

However, it is possible to verify that a particular form of knowledge still
holds. If S makes the assumption of R’s correct functioning behaviour, then,
upon receipt of an acknowledgement, it makes sense for S to assume that R
does know the value of the bit; this is exactly what is captured by K gs_

IS}, ;= recack —+ RE(Kr (bit =0)VEr(bit=1)) (8)
IS! |= recack A (bit = 0) — K K (bit = 0) ©)

6.3 The protocol of the dining cryptographers

This protocol is presented in [6] and [32]. The general aim of the protocol is
to allow an untraceable broadcasting of messages in multi-agent systems. The
protocol is originally introduced with the following example:

“Three cryptographers are sitting down to dinner at their favourite three-star
restaurant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryptogra-
phers might be paying for the dinner, or it might have been NSA (U.S. National
Security Agency). The three cryptographers respect each other’s right to make
an anonymous payment, but they wonder if NSA is paying. They resolve their
uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him
and the cryptographer on his right, so that only the two of them can see the
outcome. FEach cryptographer then states aloud whether the two coins he can
see — the one he flipped and the one his left-hand neighbour flipped — fell on

8The interpretation for the atoms is a straightforward extension of what is reported previ-
ously and not repeated here.

25

the same side or on different sides. If one of the cryptographers is the payer,
he states the opposite of what he sees. An odd number of differences uttered
at the table indicates that a cryptographer is paying; an even number indicates
that NSA is paying (assuming that the dinner was paid for only once). Yet
if a cryptographer is paying, neither of the other two learns anything from the
utterances about which cryptographer it is.” [6]

Three agents C; (i = {1,2,3}) model the three cryptographers and one agent
E models the Environment. The Environment is used to (non-deterministically)
select the initial configuration of the payer and the results of coin tosses.

Local states LC; for each cryptographer C; are represented with a tuple

LCz = (Ul, v2, Ug)

where?:
A the initial state
v1 = ¢ NotPaid if the agent did not pay for the dinner
Paid if the agent paid for the dinner
A initial state

Different if the left coin is different from the
right coin for C;
Equal if the left coin is equal to the right coin

Vg =

A initial state
vz = Odd odd number of differences uttered
Even even number of differences uttered

Local states for the Environment are tuples LE of the form
LE = {ChA,ChB,ChC, payer)

where ChA,ChB,ChC are the “channels” between the Cryptographers,
with value randomly selected at the beginning of the run being Head or tail
(the outcome of the coin toss), and

if C} paid for the dinner
if C5 paid for the dinner
if C3 paid for the dinner
if the NSA paid for the dinner

payer =

ENUR R

The actions for the cryptographers are:
ActCy = ActCy = ActC3 = {\, say(equal), say(not equal) }
The environment is not performing any action:

ActE =)\

9 denotes an empty or undefined state or action.

26

Final state Transition condition
(Paid, Equal, A} | ((\, A, A), %, (1, Head, Head, %),), (x) or
(N A, A), %, (1, Tail, Tail,),), (%)

Table 8: Transition conditions for C

Hence, there is no protocol for the Environment!©.
The protocol PC; for the cryptographers is as follows:

(say(equal) if LC; is of the form
{ NotPaid, Equal, *) or
(Paid, NotEqual,*)
PC;(LC;) = { say(not equal) if LC; is of the form
{ NotPaid, NotEqual, *) or
(Paid, Equal, *)
A all the remaining cases

\

The definition of initial states for agents representing the cryptographers is:
init(LC1) = init(LC3) = init(LC3) = (A, A, A)

The initial state for the environment is randomly selected from the set of
possible combinations of values for Channels (Head or Tail) and payer (one of
the cryptographers or the NSA).

The set of global states is G = LCy x LCy x LC3 x LE; Act = ActCy X
ActCy x ActC3 x ActE is the set of joint actions. Following what has been done
for the bit transmission problem in the previous section, the evolution function
for the system is built using the definition of the evolution functions for each
agent. Notice that the evolution of LE and the dependences from ActE in
the remaining evolution functions are not needed, thanks to the assumptions
on the environment (no actions, and local state fixed at the beginning of the
run). As an example, the transition conditions causing a transition to local
state (Paid, Equal, A) for the first Cryptographer C; are listed in Table 8.

Let IS4 be the model obtained by following the process described above. A
set of atomic propositions {paid;, paidz, paids, even, odd} is defined, that
can be interpreted in a natural way in ISg:

(IS4,9) E paidy if o, (g) = (Paid, *, %)

(IS4,9) E paidy if lo,(g) = (Paid, *, %)

(ISq,9) E paids if lc,(g) = (Paid, *, %)

(ISq,9) Eeven if lo, = (x,%, Even) for every i
(IS4,9) Eodd i Ig,(g) = (*,%,0dd) for every i

10Equivalently one can think of a protocol mapping every local state for the environment
to the null action A.

27

I will check the correctness of:

IS4 E odd — (—paid; — (K¢, (paid2 V paids)
A (10)
K¢, (paidz) A ~ K¢, (paidy))))

IS4 |= even — K¢, (—paidy A —paidz A —paids) (11)

7 Results obtained so far

The available model checkers (e.g. SMV and SPIN) do not allow for the veri-
fication of epistemic operators, but still they can be used in the verification of
interpreted systems.

The methodology that I present here has been developed to automatically
verify non-temporal epistemic properties of interpreted systems. Given an in-
terpreted system IS, it is possible to build an SMV program Pjg such that the
set of states in the temporal model generated by Prs has a one-to-one corre-
spondence with global states of the interpreted system. The SMV program is
constructed as follows!!:

1. Declare an SMV-variable for each agent, where the set of local states is
stored.

2. Declare an SMV-variable for the actions, one for each agent.

3. Actions (in SMV) take a value that is based on the protocol of the inter-
preted system.

4. The conditions for the evolution of the local states variable are obtained
from the evolution function of the corresponding interpreted system.

5. Propositions are defined using the function A of the interpreted system.

The set of “reachable states” is needed to build epistemic and deontic relations
between states to evaluate formulae involving epistemic and deontic operators.
This set can be obtained automatically from NuSMYV, as explained below.

Then, I have built a parser that takes the set of reachable states as input and
produces a model with epistemic and deontic relations in the format of Akka, a
Kripke model editor'?. This methodology is summarised in Fig. 1

In the following subsections I apply this methodology to the mechanical
verification of formulae (1-11) of Section 6.

11 The methodology presented here is a revised version of the one in [22].
12h‘t:tp://‘t:uring.wins.uva.nl/r\alhend:rik/

28

Set of reachable states

Interpreted System NuSMV code /\\ _ | Akkachecker

Figure 1: The methodology for non-temporal model checking.

7.1 Verification of the bit transmission problem

This example is analysed in detail in the paper [22]. I report here the main
results.
Basic case: the local states for the sender S are coded in NuSMYV as:

LS : {LsO, Ls1, LS2, LS3};
- —-- Local states for the sender:
- - LSO = 0

- - LS1 =1

- - LS2 = (0,ack)

- - LS3 = (1,ack)

In a similar way the local states for R and for the environment can be encoded,
and the actions specified. The protocol functions and the evolution function
(called next in the code) are coded in terms of local states and actions. For
example,

next(LS) := case
(LS = LSO) & (ActR = sendack)
& (ActE = <-r | ActE = s-r) : LS2;
(LS =1LS1) & (ActR = sendack)
& (ActE = <-r | ActE = s-r) : LS3;
1 : LS;

esac;

I modified the NuSMV code to generate the reachable global states of the sys-
tem!®. The output is a file with the list of all the reachable states. This file
is parsed by means of a C++ program that I wrote, producing as output a
Kripke model representing the epistemic relations generated by the scenario.
The format of the output file is tailored for Akka, a software package that al-
lows checking validity in a model. Figure 2 shows a screen-shot of the model
obtained as depicted by Akka. The nodes represent the global states of the
model and the arcs represent the epistemic (equivalence) relations between the
states. We are now in a position to check any epistemic property of the system
that can be written as a modal formula of arbitrary complexity. Specifically, we
can check mechanically that Formulae (1-3) hold in this model.

Faulty Receiver — 1: The NuSMV implementation of this version of the
bit transmission problem is a straightforward extension of the code for the basic
version presented above (details can be found in [22]). Formulae (4-6) can be
checked with Akka. We see that the faults by R considered in this version of the

13Thanks to Marco Pistore, who helped in the modification of NuSMV v2.0. Thanks to this
work, printing reachable states is a feature available from NuSMV v2.1.

29

Figure 2: Screenshot in Akka of the model IS}, for the basic version of the bit
transmission problem.

example are recoverable, in the sense that they do not necessarily compromise
communication.

Faulty Receiver — 2: The NuSMYV code for this case is an extension of the
basic code. The evolution function for the receiver is a bit more complicated,
to cover all possible cases of faulty behaviour. Formulae (7-9) can be checked
mechanically, as shown in [22].

7.2 Verification of the protocol of the dining cryptogra-
phers

In the interpreted system for the protocol of the dining cryptographers four
agents are involved: three cryptographers and the environment. I decided to
extend the methodology presented above, by developing a Java compiler to
translate the specification of an interpreted system given in XML into SMV
code. Preliminary results are reported in [36, 35]. The revised methodology
proceeds as follows:

e Local states: I assume that local states can be represented as a list of
variables, each having a finite range of values. More in detail, consider
an agent i: a local state [; for agent i is a tuple I; = (v1,4,. .., vp,;) Where
each v, ; ranges over a finite set of values.

¢ Evolution function: In the description below I use a slightly modified
and simpler syntax for 7: the idea is to decompose final global states
of the function 7w. Consider n evolution functions, one for each agent,
S X Act — L; (i = 1,...,n) from global states and actions to local

30

{ Specify interpreted system J XML editor

|

[Trans! ate specification into NuSMV program J Java compiler
l i
{ Use NuSMV to compute reachable states } NusMv
[Model check epistemic formulae] Akka
Pr ocedur es Sof t ware tool s

Figure 3: The revised methodology for non-temporal model checking.

states of agent i. In the following, I shall list only the global states and
actions that cause a change in the local state of agent i, and assume that,
if a global state is not listed in the definition of some 7;, then this global
state is not relevant in the evolution of L;.

The specification of an interpreted system is required as an input for the Java
translator. This specification must contain at least the following information:
1. Number of agents.

2. Number of local states and actions for each agent.

3. Number of variables in each local state, for each agent; values of each variable
in the local state.

4. Protocol as a function from local states (i.e. set of variables) to actions, one
for each agent.

5. Initial state(s).

6. Transition functions from local states and actions to a single local state.

These parameters are read from an XML file, whose DTD is available at the
following link:
http://www.dcs.kcl.ac.uk/pg/franco/is/is.dtd.

This revised methodology is illustrated in Fig. 3. I did not include deontic
operators in the Java translator and in the XML specification, but nevertheless
we have been able to check the protocol of the dining cryptographers.

Specifically, Formulae (10) and (11) are true in the model IS4. These two
formulae confirm the correctness of the statement: if the first cryptographer did
not pay for the dinner and there is an odd number of differences in the utter-
ances, then the first cryptographer knows that either the second or the third
cryptographer paid for the dinner; moreover, in this case, the first cryptogra-
pher does not know which one of the remaining cryptographers is the payer.
Conversely, if the number of differences in the utterances is odd, then the first
cryptographer knows that nobody paid for the dinner.

31

8 Conclusion

In this report I have presented my research, that deals mainly with the issue of
verification in MAS. After a detailed introduction on multi-agent system theories
and model checking, I presented results obtained in the verification of epistemic
properties in interpreted systems. Also, a review of the (recent) literature in
MAS verification is reported in Section 4.2.

Verification of MAS is a relatively unexplored field of research, and this
research aims at making a contribution in this field. Specifically, in the work
carried out so far I have been able to model check automatically non-temporal
epistemic properties of interpreted systems in two well known examples: the
bit transmission problem and the protocol of the dining cryptographers. Other
examples could be checked using the methodology presented in this work, and
this is one of my objectives for the future.

However , the methodologies that I have presented in Section 7 have some
drawbacks:

e The representation of global states in Akka is not symbolic. It is true that
in most cases the set of reachable states is orders of magnitude smaller
than the full cartesian product of local states, and reachable states are
computed symbolically by NuSMV. Nevertheless, scalability can be an
issue for problems with a large set of reachable states.

e Model checking is limited to epistemic or deontic operators. Though non-
temporal model checking makes sense in many cases (see [36]), sometimes
we want to reason about the evolution of knowledge with time.

To overcome these issues, different lines of research are currently under in-
vestigation. I plan to obtain a methodology to symbolically model check a
richer language, including temporal and epistemic operators, by the end of this
research.

In parallel, from a more theoretical point of view, I am currently studying
the completeness of the KJZ operator and some other theoretical issues.

References

[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent
systems. Journal of Logic and Computation, 8(3):401-423, June 1998.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. In Proceedings of Tools and Algorithms for the Analysis
and Construction of Systems (TACAS’99), number 1579 in LNCS, 1999.

[3] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’03), July 2003.

32

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transaction on Computers, pages 677—-691, August 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10%° states and beyond. Information and Com-
putation, 98(2):142-170, June 1992.

[6] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65-75, 1988.

[7] B. F. Chellas. Modal Logic, an Introduction. Cambridge University Press,
Cambridge, 1980.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new
symbolic model verifier. Lecture Notes in Computer Science, 1633, 1999.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[10] P. R. Cohen and H. J. Levesque. Intention is choice with commitment.
Artificial Intelligence, AI 42(2-3):213-261, March 1990.

[11] D. C. Dennett. The intentional stance. The MIT Press, Massachusetts,
1987. 388 pages, 1987.

[12] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about
Knowledge. The MIT Press, Cambridge, Massachusetts, 1995.

[13] R. Goldblatt. Logics of Time and Computation. Center for the Study of
Language and Information, Stanford, California, 2 edition, 1992.

[14] J. Halpern and M. Y. Vardi. Model checking vs. theorem proving: A man-
ifesto. In J. Allen, R. E. Fikes, and E. Sandewall, editors, Proceedings
2nd Int. Conf. on Principles of Knowledge Representation and Reason-
ing, KR’91, Morgan Kaufmann Series in Knowledge Representation and
Reasoning, pages 325-334. Morgan Kaufmann Publishers, San Mateo, CA,
1991.

[15] W. van der Hoek and M. Wooldridge. Model checking knowledge and time.
Lecture Notes in Computer Science, 2318, 2002.

[16] W. van der Hoek and M. Wooldridge. Towards a logic of rational agency.
Logic Journal of the IGPL, 11(2):133-157, March 2003.

[17] G. J. Holzmann. The model checker spin. IEEE transaction on software
engineering, 23(5), May 1997.

[18] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic.
Routledge, New York, 1996.

33

[19] M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, Cambridge,
England, 2000.

[20] A. Lomuscio. Information Sharing among Ideal Agents. PhD thesis, School
of Computer Science, University of Birmingham, February 1999.

[21] A. Lomuscio and W. Penczek. Bounded model checking for interpreted
systems. Technical report, Institute of Computer Science of the Polish
Academy of Sciences, 2002.

[22] A. Lomuscio, F. Raimondi, and M. Sergot. Towards model checking inter-
preted systems. In Proceedings of MoChArt, Lyon, France, August 2002.

[23] A. Lomuscio and M. Sergot. Extending interpreting systems with some
deontic concepts. In J. van Benthem, editor, Proceedings of TARK 2001,
pages 207—218, San Francisco, CA, July 2001. Morgan Kauffman.

[24] A. Lomuscio and M. Sergot. On multi-agent systems specification via deon-
tic logic. In J.-J Meyer, editor, Proceedings of ATAL 2001. Springer Verlag,
July 2001. To Appear.

[25] A. Lomuscio and M. Sergot. The bit transmission problem revisited. Tech-
nical Report 4/2002, Department of Computing, Imperial College, London
SW7 2BZ, UK, 2002.

[26] A. Lomuscio and M. Sergot. Violation, error recovery, and enforcement in
the bit transmission problem. In Proceedings of DEON’02, London, May
2002.

[27] A. Lomuscio and W Penczek T. Lasica. Bounded model checking for in-
terpreted systems: preliminary experimental results. In Proceedings of the
Second NASA Workshop on Formal Approaches to Agent-Based Systems
FAABS II, Greenbelt, MD, USA, October 2002.

[28] J. McCarthy. Ascribing mental qualities to machines. In Martin Ringle,
editor, Philosophical Perspectives in Artificial Intelligence, pages 161-195.
Humanities Press, Atlantic Highlands, New Jersey, 1979.

[29] K. McMillan. Symbolic model checking: An approach to the state explosion
problem. Kluwer Academic Publishers, 1993.

[30] S. Merz. Model checking: A tutorial overview. Lecture Notes in Computer
Science, 2067:3-77, 2001.

[31] R.van der Meyden and N. V. Shilov. Model checking knowledge and time in
systems with perfect recall. FSTTCS: Foundations of Software Technology
and Theoretical Computer Science, 19, 1999.

[32] R. van der Meyden and K. Su. Symbolic model checking the knowledge of
the dining cryptographers. Submitted, 2002.

34

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. Miiller-Olm, D. Schmidt, and B. Steffen. Model-checking: A tutorial
introduction. In Agostino Cortesi and Gilberto Filé, editors, Static Anal-
ysis, volume 1694 of Lecture Notes in Computer Science, pages 330-354.
Springer, 1999.

W. Penczek, B. Wozna, and A. Zbrzezny. Bounded model checking the
universal fragment of CTL. Fundamenta Informaticae, 50:1-22, 2002.

F. Raimondi. Model checking epistemic properties of interpreted systems.
In Proceedings of ESSLLI0S - Student Session, August 2003.

F. Raimondi and A. Lomuscio. A tool for specification and verification of
epistemic and temporal properties of multi-agent system. In Proceedings of
LCMAS, Workshop on Logic and Communication in Multi-Agent Systems,
Eindhoven, June 2003.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Symposium on Logic in Computer Science
(LICS’86), pages 332—-345, Washington, D.C., USA, June 1986. IEEE Com-
puter Society Press.

M. Wooldridge. Computationally grounded theories of agency. In E. Durfee,
editor, Proceedings of the Fourth International Conference on Multi-Agent
Systems (ICMAS 2000). IEEE Press, July 2000.

M. Wooldridge. Reasoning about Rational Agents. Intelligent Robots and
Autonomous Agents. The MIT Press, Cambridge, Massachusetts, 2000.

M. Wooldridge, M. Fisher, Marc-Philippe Huget, and Simon Parsons.
Model checking multi-agent systems with MABLE. In Maria Gini, Toru
Ishida, Cristiano Castelfranchi, and W. Lewis Johnson, editors, Proceed-
ings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’02), pages 952-959. ACM Press, July
2002.

M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2), 1995.

35

