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Abstract. Reasoning about agents and modalities such as knowledge
and belief leads to models where different relations over states co-exist,
or equivalently, where information (labels, actions) is associated to state
transitions. This paper discusses how to augment classical CTL symbolic
model-checking to support logics with actions such as A-CTL (action-
CTL), and how this can be implemented using BDDs in tools such as
the SMV/NuSMV package. Considering general action-state structures,
we first propose a natural extension of CTL to actions, called Action-
Restricted CTL (ARCTL) and adapt classical results from CTL to ex-
press model checking based on three functions eax, eau and eag. On these
grounds, we present two different implementations of symbolic model
checking with actions. The first approach encodes action-state models
and logics into pure state-based models and logics, that can be checked
with existing model-checkers. The second approach consists in a native
implementation of the three extended operators. We report on our pro-
totype implementation of both approaches based on NuSMV and give
an overview of how this is used to model-check the temporal epistemic
logic CTLK.

1 Introduction

In the domains of artificial intelligence and multi-agent systems, it is natural to
reason about both actions and states. Moreover, a number of modalities, such as
epistemic or deontic logics, can be formalized in terms of relations over the states
of a system or model. In this setting, it is desirable to have analysis techniques
and tools where information can be associated to both states and transitions of
the model, or more generally where more than one relation over states can be
considered within the same model.

Symbolic model checking, and the SMV tool in particular, have adopted
a state-based view of the systems to be verified, expressed mathematically as
Kripke structures. Meanwhile, another large body of work has developed based
on an observable, action-based view of systems, where the state itself is ab-
stracted away and models are characterized by the visible actions they can per-
form, and expressed mathematically as Labeled Transition Systems (LTS). These
two views can be, and have been, combined. In this paper, we designate as mixed
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the models and logics that combine state-based and action-based reasoning. How-
ever, to the best of our knowledge, there is no widely available tool that allows
to apply the power of BDD-based symbolic model checking of branching-time
logics to mixed models and logics.

This paper discusses how BDD-based symbolic model checking for mixed
logics can be achieved, and presents two different implementations:

1. by reducing the mixed-logic model-checking problem to a state-based model-
checking problem that can be solved with existing tools;

2. by extending existing model-checkers to support mixed models and logics
natively.

To this end, after reviewing the prominent existing state-based and action-
based models (Kripke structures, labeled transition systems) and logics (CTL,
A-CTL) in Section 2, we set our formal definition of mixed models, introduce
a mixed logic, ARCTL, that cleanly generalizes CTL with actions, and extend
symbolic model checking from CTL to ARCTL in Section 3. In Section 4, we
describe how mixed models and logics can be reduced to Kripke structures and
CTL while preserving validity. In Section 5, we describe a prototype implemen-
tation of both approaches based on the NuSMV tool [1]. In Section 6, we give an
overview of how a model checker for the temporal epistemic logic CTLK [2] has
been built on top of these implementations. Finally, Section 7 discusses related
work and Section 8 draws conclusions and perspectives.

2 Background

2.1 State-based Logics

Computation Tree Logic (CTL) [3, 4] is the classical branching-time logic used in
symbolic model checking. Given a set of propositional atoms P, a CTL formula
is interpreted over a Kripke Structure (KS) K = 〈S,S0,R,V〉, where S is a
non-empty set of states, S0 ⊆ S is a set of possible initial states, R ⊆ S × S
is a transition relation, denoted s −→ s′, and V : S → 2P is an interpretation
function.

The syntax of CTL is given by the following grammar, where p ∈ P and φ
and γ range respectively over CTL (state) formulae and path formulae:

φ ::= true
∣∣ p

∣∣ ¬φ
∣∣ φ ∧ φ

∣∣ Eγ
∣∣ Aγ

γ ::= X φ
∣∣ φ U φ

with the usual derived Boolean operators and the following derived temporal
operators:

EF φ = E(true U φ) AF φ = A(true U φ)
EG φ = ¬AF ¬φ AG φ = ¬EF ¬φ

Note that temporal logic operators take priority over Boolean connectives: EXφ∨
φ′ = (EX φ) ∨ φ′ 6= EX (φ ∨ φ′). The semantics of a CTL formula φ is defined as



a satisfaction relation s |= φ over states s ∈ S, see for example [4]. We postpone
the detailed definition of semantics to mixed logics in Section 3.2.

All CTL operators can be reduced to EX, EU and EG. Symbolic model check-
ing of CTL over finite models, as implemented in the SMV family of tools, works
by providing BDD-based evaluation functions ex(S), eu(S, S′) and eg(S), where
S, S′ are Boolean encodings of sets of states, that compute the semantics of
the corresponding operators. In the case of eu and eg, this means computing
fixpoints over ex (which are guaranteed to converge thanks to finiteness of the
model), for example eg(S) = νZ.S ∩ ex(Z).

CTL symbolic model checking has been extended to support fairness, in
the form of a set of conditions that characterize fair computations. Fairness is
not taken into consideration within the scope of this paper, but the issue is
nevertheless discussed in Section 3.4.

2.2 Action-Based Logics

In contrast to state-based logics such as CTL, action-based logics focus on the
actions that a system can perform. These logics are interpreted over labeled
transition systems (LTS). A LTS is a structure L = 〈S,S0,A, T 〉, where S and
S0 are as in Kripke structures, A is a set of actions and T ⊆ S × A × S is a
labeled transition relation. We write s

a−→ s′ for (s, a, s′) ∈ T , s 6 a−→ when no
such s′ exists and s 6−→ when no such a and s′ exist.

For example, Action CTL, or A-CTL [5], is an adaptation of CTL to labeled
transition systems.3 A-CTL extends CTL operators with action formulae α in-
terpreted over actions a ∈ A. For example, the A-CTL formula A[φαUα′φ

′] holds
if all paths are of the form

s0
a1−→ s1 · · ·

ak−→ sk
a′−→ s′

for some k, where all si, all ai, s′ and a′ respectively satisfy φ, α, φ′ and α′. The
full syntax and semantics of A-CTL, defined over LTS, can be found in [5]. [6]
provides a comprehensive survey of temporal logics with actions, and A-CTL in
particular, including fixpoint characterizations of A-CTL operators.

Note that classical action-based models also feature a distinguished internal
action. We do not deal explicitly with internal actions in the scope of this paper;
our definitions correspond to a “strong” interpretation that treats all actions
uniformly.

3 Mixing States and Actions

In this section, we set our formalisation of mixed models and formulae, that
combine state-based and model-based reasoning.
3 Action CTL is usually abbreviated ACTL, but that could be confused with the

universal fragment of CTL, unfortunately also referred to as ACTL, for example in
[4].



3.1 Mixed Transition Systems

We can generalize both state-based models (Kripke structures, KS) and action-
based models (Labeled Transition Systems, or LTS) into a common super-structure
that we call mixed transition system (MTS). Given two sets of propositional
atoms PS and PA, respectively over states and actions, a mixed transition sys-
tem over PS and PA is a structure M = 〈S,S0,A, T ,VS ,VA〉, where

– S is a non-empty set of states;
– S0 ⊆ S is the set of possible initial states;
– A is a non-empty set of actions;
– T ⊆ S ×A× S is the transition relation;
– VS : S → 2PS is the interpretation function on states;
– VA : A → 2PA is the interpretation function on actions.

MTS combine actions over transitions from LTS and propositional atoms
over states from KS, and add propositional atoms over actions that allow for a
generalized and more uniform presentation of logic formulae over MTS models.
Unless otherwise mentioned, we will assume an atom in PA for every action, i.e.
A ⊆ PA and a ∈ VA(a).

An MTS can be projected to a KS sub-structure 〈S,S0,R,VS〉, where R =
{(s, s′)

∣∣ (s, a, s′) ∈ T }, or an LTS sub-structure 〈S,S0,A, T 〉, and thus both
state-based and action-based logics can be interpreted over an MTS.

A path π of M is a finite or infinite sequence of connected transition steps
(si−1, ai, si) ∈ T , denoted as s0

a1−→ s1
a2−→ s2 . . .. In particular, a zero-length

path consists of a single state. Let T ∗ (resp. T ω) be the set of finite (resp. infinite)
paths of M. Given a finite (resp. infinite) path π = s0

a1−→ s1
a2−→ s2 . . .

an−→ sn

(
an+1−→ . . .), we define:

– |π| = n (resp. ω), the length of a path;
– π(i) = si, the i-th state of π (0 ≤ i ≤ |π|);
– π(•i) = ai, the i-th action of π (1 ≤ i ≤ |π|).

A full-path is a path that is either infinite or ends in a terminal state. We
define Π(M) (or just Π) as the set of full-paths of M, and Π(M, s) (or Π(s))
as the set of full-paths from state s.

Π(M) := T ω ∪ {π ∈ T ∗ ∣∣ (|π| = n ∧ π(n) 6−→)}
Π(M, s) := {π ∈ Π(M)

∣∣ π(0) = s}

Note that unlike classical definitions of CTL model-checking, we do not en-
force the transition T to be total; deadlocks or refused actions are in general
possible and full-paths need not be infinite. Even if T were required to be total,
action-based logics have to consider cases where some action a is not allowed
(s 6 a−→), so deadlock states where no action is allowed (s 6−→) arise as a particular
case anyway.



3.2 Action-Restricted CTL

As a logic over mixed state-action models, we introduce a generalization of CTL,
called Action-Restricted CTL, or ARCTL. ARCTL has the same temporal oper-
ators as CTL, except that they can be restricted to paths whose actions satisfy
a given action formula α. The syntax of ARCTL is given by the following gram-
mar, where p ∈ PS , b ∈ PA, and φ, γ and α range respectively over ARCTL
(state) formulae, path formulae and action formulae:

φ ::= true
∣∣ p

∣∣ ¬φ
∣∣ φ ∧ φ

∣∣ Eαγ
∣∣ Aαγ

α ::= true
∣∣ b

∣∣ ¬α
∣∣ α ∧ α

γ ::= X φ
∣∣ φ U φ

Derived forms such as EαF φ are defined as for CTL. Intuitively, given an
ARCTL formula Eαγ, the path formula γ is evaluated over full α-prefixes of
full-paths of the model. To formalize that, we define the α-restriction of a MTS
M = 〈S,S0,A, T ,VS ,VA〉 as the structure M|α = 〈S,S0,A, T |α,VS ,VA〉, where
T |α = {(s, a, s′) ∈ T

∣∣ a |= α}. For conciseness we write Π|α for Π(M|α) and
Π|α(s) for Π(M|α, s). Note that, by construction, any path (or full-path) of
M|α is a prefix of a path (or full-path) of M. Aα and Eα are interpreted over
the full-paths of M|α, and the path formulae are defined as in standard CTL.
We define the semantic relation (M, s) |= φ, or concisely s |= φ, as follows (we
omit the natural semantics of Boolean connectives and propositional atoms):

s |= Aαγ iff ∀π ∈ Π|α(s) · π |= γ

s |= Eαγ iff ∃π ∈ Π|α(s) · π |= γ

π |= X φ iff |π| ≥ 1 ∧ π(1) |= φ

π |= φ U φ′ iff ∃i ≥ 0 · |π| ≥ i ∧ π(i) |= φ′ ∧ ∀k ∈ [0, i− 1] · π(k) |= φ

The underlined terms pertain to finite paths. In particular, if s 6 α−→ (i.e. s 6 a−→
for any a |= α), then Π|α(s) = {s}, containing a single zero-length trace, and
both EαX φ and AαX ¬φ are false for any φ, whereas ¬EαX true is true. For any
φ, α and s, we have that one and only one of EαXφ, AαX¬φ and ¬EαXtrue holds
in s. Also note that EαG φ also holds in s if there is a finite α-full-path from
s where φ holds. In contrast, we can define EαGω φ that holds only for infinite
α-full-paths, with

EαGω φ = EαG (φ ∧ EαX true)

If we restrict action formulae to α = true and consider the Kripke sub-
structure in M, we obtain a semantics for CTL with finite and infinite traces.
One can easily check that this semantics is consistent with the classical one for
infinite traces.

Note that A-CTL can be extended to mixed models in the same manner.
We chose instead to introduce ARCTL because it offers a more uniform inter-
pretation of the action conditions: for all path formulae γ, Aαγ means “for all
α-full-paths, γ holds”. In contrast, in A-CTL, AFαφ is co-variant in α (“all paths



do remain α-paths until they eventually reach φ”) while AGα φ is contra-variant
(“all paths, as long as they remain α-paths, maintain φ”). Besides its structural
simplicity, this also makes ARCTL appropriate for cases where actions denote
transition relations of a different nature, such as temporal and epistemic modali-
ties: if some action t is used for temporal transitions, temporal properties can be
expressed as t-restricted ARCTL formulae, with their usual CTL interpretation.
This was indeed the initial motivation for formulating this logic, as illustrated in
section 6. On the other hand, it must be noted that A-CTL is more expressive
as ARCTL on pure action models: A(φ αUα′ φ

′) cannot be translated to ARCTL
(unless α and α′ are disjoint).

3.3 Model Checking of ARCTL

Symbolic model-checking can be applied to ARCTL in the same way as to CTL,
with two extensions: (i) transitions are constrained by action formulae, and (ii)
additional conditions are set to deal with finite paths. For (i), the pre-image
computation embodied in the function ex(S) is extended to deal with actions.
For (ii), we modify the computations to deal specifically with finite paths.

Given S, S′ ∈ 2S and A ∈ 2A, we define functions eax(A,S), eau(A,S, S′)
and eag(A,S) as follows:

eax(A,S) = {s
∣∣ ∃a, s′ · s a−→ s′ ∧ a ∈ A ∧ s′ ∈ S}

eau(A,S, S′) = µZ · S′ ∪ (S ∩ eax(A,Z))
eag(A,S) = νZ · S ∩ eax(A,Z)

where we write µZ.F (Z) (resp. νZ.F (Z)) for the least (resp. greatest) fixpoint
of F . For convenience, we also define eax(A) = eax(A,S). Whereas eax and eau
exactly capture the ARCTL operators EαXand EαU, note that eag accepts infinite
paths only; it corresponds to EαGω and not EαG. These functions are immediate
translations of fixpoint characterizations of the corresponding operators:

Eα[φ U φ′] = µZ · φ′ ∨ (φ ∧ EαX Z)
EαGω φ = νZ · φ ∧ EαX Z

These characterizations can be proven through a simple adaptation of similar
results on CTL, see for example [4]. As an aside, they also imply that ARCTL,
like CTL, belongs to the alternation-free fragment of modal µ-calculus, that can
be checked in linear time w.r.t. the size of the model and formula.

As in CTL, all ARCTL operators can be expressed in terms of the three prim-
itive computations above, as follows (where ¬S stands for S \S, the complement
of S). Note the underlined eax(A) terms, needed for finite traces.

[[EαX φ]] = eax([[α]], [[φ]])
[[AαX φ]] = eax([[α]]) ∩ ¬eax([[α]],¬[[φ]])

[[Eα(φ U φ′)]] = eau([[α]], [[φ]], [[φ′]])
[[Aα(φ U φ′)]] = ¬eau([[α]],¬[[φ′]],¬[[φ′]] ∩ (¬[[φ]] ∪ ¬eax([[α]]))) ∩ ¬eag([[α]],¬[[φ′]])



The evaluation functions eax, eau and eag can be implemented in a BDD-
based model checker like NuSMV, based on a Boolean encoding of S and A,
in a very similar way to CTL model-checking as implemented in SMV [7]. A
prototype of such an implementation is described in Section 5.3.

3.4 Fairness

CTL symbolic model checking can also handle fairness conditions, in the form of
a set of sets of states F ∈ 22S . A path is fair if it visits every set in F infinitely
often. The functions ex, eg and eu have variants exF , egF and euF restricted to
fair paths.

This approach can be extended to mixed models and ARCTL, by considering
fair α-full-paths when evaluating α-restricted operators. In that setting, fairness
conditions can be extended to sets of states-action pairs F ∈ 22S×A (this is
indeed already implemented in NuSMV).

However, by their very definition, fair paths are necessarily infinite, so fair
model checking does not work well at all with finite paths. If a state has no
infinite path from it, then there is no fair path either, and all E formulae are
false and all A formulae are true. As an extreme example, if s

a−→ s′ 6−→, then
s 6|= EX 〈true〉, because there is no fair path from s′.

Extending fair CTL model checking to action-based logics interpreted over
finite α-full-paths is an important issue to be further investigated.

4 From Mixed to State-Based Logic

This section presents a transformation post from mixed transition systems to
Kripke structures and from ARCTL to classical CTL, such that the combined
transformation preserves validity. This provides a way to reduce action-based and
mixed model-checking to standard CTL model checking, that can be performed
using a tool such as SMV.

4.1 Post-Projection of Mixed Models

Given a MTS M = 〈S,S0,A, T ,VS ,VA〉 over PS and PA, we define the post-
projection as the KS post(M) = 〈S ′,S ′0,R′,V ′〉 over P ′ = PS ∪ PA, where

– S ′ = A× S,
– S ′0 = A× S0,
– R′ = {((a, s), (a′, s′))

∣∣ (s, a′, s′) ∈ T ∧ a ∈ A},
– V ′((a, s)) = VA(a) ∪ VS(s).

In essence, transition labels are projected into the post-state, and s
a−→ s′ be-

comes (∗, s) −→ (a, s′), for any action ∗. By construction, the action atoms in
PA become state atoms in P ′.



4.2 Post-Projection of Action-based Logics

As action atoms of a MTS M become state atoms in the KS post(M), action-
based formulae can be converted into plain CTL formulae on post(M), with
action conditions turning into state conditions. Formally, given an ARCTL state
formula φ, we define the CTL formula post(φ) as follows:

post(EαX φ) = EX (α ∧ post(φ))
post(AαX φ) = AX (α ⇒ post(φ))

post(Eα(φ U φ′)) = post(φ′) ∨ (post(φ) ∧ EX E(α ∧ post(φ) U α ∧ post(φ′)))
post(Aα(φ U φ′)) = post(φ′) ∨ (post(φ) ∧ AX A(post(φ) U ¬α ∨ post(φ′)))

Appropriately, the semantics is preserved by the transformation, in the sense of
the generalized semantics of CTL with finite paths:

(M, s) |= φ iff (post(M), s) |= post(φ)

which can be proved by structural induction on φ. The details are tedious but
the principle is straightforward.

Some sub-formulae get replicated in the transformation, so an exponential
increase in the size of the transformed formula may result in the worst case. In
practice however, the caching of BDD computation results largely mitigates the
impact of this increase when performing symbolic model checking. In any case,
this provides additional motivation for using a native implementation of action-
based logics in the model checker, that avoids the redundant computations. This
is the topic of the next section.

5 Action-Based Model-Checking in SMV

This section discusses how SMV has been extended to support logics with ac-
tions. We first give an overview of SMV, then we describe two different imple-
mentations of actions in SMV: the first one by implementing the post transfor-
mation as a pre-processing stage using the macro-processor M4, the second one
by modifying the SMV tool itself to support mixed formulae in specifications.

5.1 Overview of SMV

SMV is a symbolic model checker that evaluates CTL specifications on a finite-
state model described in a custom language. While SMV was initially developed
at Carnegie Mellon [7], we have been using NuSMV, an open-source extended re-
implementation of the tool [8]. NuSMV uses an efficient BDD library to perform
symbolic model checking of formulae. (NuSMV also supports linear temporal
logic and SAT-based bounded model checking.)

The latest version of NuSMV (2.2) provides partial support for action-style
constructs, in the form of input variables. Input variables (IVARs) are not part



of states, and they are used to represent input values for models (typically, they
correspond to the input lines of a circuit). Technically, these variables are exis-
tentially quantified out when computing transitions. Input variables can appear
in transition relations, but they are not allowed in CTL formulae.

NuSMV uses BDDs to perform model checking of CTL formulae: given en-
codings of state and input variables into Boolean arrays s and a, respectively, the
transition relation T and initial states S0 are compiled by NuSMV into BDDs
[[T ]](s, a, s′) and [[S0]](s). Then, for any CTL formula φ, the BDD [[φ]](s) corre-
sponding to the set of states of the model in which the formula holds is computed
inductively on the formula’s structure, based on (fair) implementations of the
functions ex, eg and eu described before.

SMV supports two styles for declaring transitions: the assignment style is
based on non-deterministic assignments of initial and next values of each vari-
able, whereas the constraint style allows arbitrary conditions over variable values
in consecutive states. The former is safer and more convenient for human-written
models, but the latter is more flexible, especially in the context of mechanically
generated models.

5.2 Post-Projection to SMV

We have implemented the post mapping on SMV models, in the form of a macro
library for M4, a generic macro-processor included in most UNIX distributions
[9]. The library provides macros supporting the two sides of the post trans-
formation: models and logic formulae. Our implementation currently supports
ARCTL, but adaptation to similar logics such as A-CTL would be straightfor-
ward.

The mapping of logic formulae is a straightforward application of the equa-
tions of Section 4. For example, using the macro definition

define(‘EU_A’,‘((($2) & EX E[($1) & ($2) U ($1) & ($3)]) | ($3))’)

Ea[p U q] can be written as EU_A(a,p,q) and is expanded to

(((p) & EX E[(a) & (p) U (a) & (q)]) | (q))

Since input variables are forbidden in SMV specifications, state variables have to
be used instead. It is up to the user to decide which (state) variables in the SMV
model represent action and state variables of the mixed model, and consistently
use them only in the appropriate parts of the ARCTL operator macros — this
is not enforced by the macro package.

The expansion produces SMV constraint-style transition declarations: tran-
sitions are declared as TRANS <tcond>, where <tcond> is a transition condition
with sub-terms of the form next(<cond>) to refer to the post-state. We provide
a macro

define(‘TRANS_A’,‘TRANS next($1) -> ($2)’)



such that TRANS_A(a,t) defines a transition labeled by a and constrained by t,
and expands to TRANS next(a) -> (t). Again, the user must make sure that
the action and state parts (a and t) of TRANS_A(a,t) declarations contain only
his chosen action and state variables, respectively.

5.3 Action Logics in SMV

We have extended NuSMV to support ARCTL formulae. We use NuSMV’s exist-
ing input variables as actions, in the sense that any valuation of input variables
correspond to a different action. In other words, the action set A is the cross-
product of the ranges of all input variables. Correspondingly, action formulae
correspond to conditions over these variables.

In particular, we modified the syntax of formulae accepted by NuSMV to
include ARCTL operators, as follows:

ctlexpr ::= . . . (existing CTL forms)∣∣ EAX ( simpleexpr ) ctlexpr∣∣ EAG ( simpleexpr ) ctlexpr∣∣ EA ( simpleexpr ) [ ctlexpr U ctlexpr ]∣∣ . . . (others defined similarly)

where simpleexpr is a conditional expression, further restricted to contain only
input variables. For example, EA(a)[p U q] is the concrete syntax for Ea[pU q].

Here is an overview of the modifications that were performed on the NuSMV
code base to evaluate these new operators:

– Action formulae can readily be evaluated as BDDs, in the same way as
standard state formulae, without any code modification.

– We defined a new BDD function eax(A,S) which implements the eax func-
tion of Section 3.3 over BDD-encoded sets of actions and states (A,S). This
function is a fairly simple adaptation of the existing ex(S) function for CTL.
Technically, the function merges A and S into a (BDD-encoded) set of action-
state pairs.

– Similarly, we defined BDD functions eau(A,S, S′) and eag(A,S), implement-
ing functions eau and eag of Section 3.3 over BDDs, based on fix-point
computations using the function eax.

– These three BDD functions were used to compute the (BDD corresponding
to the) set of states satisfying any ARCTL formula, by providing a corre-
sponding evaluation function for each operator.

– Besides these core changes, support for the new operators had to be folded in
several other modules, including of course the SMV model parser and CTL
evaluation dispatch functions.

These modifications allow for the evaluation of ARCTL formulae, as illus-
trated in the example of Figure 1, involving two agents bob and alice who can



non-deterministically select, at each time step, whether to perform an increment
of their variable count or not. In this case, we have two Boolean input variables
alice.move and bob.move, there are four possible actions corresponding to pos-
sible valuations of these variables, and action formulae are conditions on these
variables. As illustrated at the end of the example, ARCTL formulae allow to
reason about the consequences of actions.

MODULE agent

IVAR move : boolean;

VAR count : 0..10;

ASSIGN

init(count) := 0 ;

next(count) := case

move & count < 10: count + 1;

1 : count;

esac;

DEFINE win := (count=10);

MODULE main

VAR alice : agent;

VAR bob : agent;

SPEC !EAX (bob.move) bob.count = 0

SPEC AAX (bob.move & alice.move) (bob.count > 0 & alice.count > 0)

SPEC AAF (bob.move) bob.win

Fig. 1. NuSMV code with ARCTL specifications.

Our implementation is at the prototype stage and still needs some improve-
ments. In particular, the generation of witness traces for unsatisfied specifications
is not yet supported for our new ARCTL operators.

Also, our implementation computes one monolithic BDD [[T ]](s, a, s′) cov-
ering all possible actions. In some cases, separate transition relations could be
computed for separate actions, potentially resulting in smaller BDDs and thus
better scalability. Let us assume a finite action set A = {a1, . . . , an} (typically,
the range of a unique input variable in the SMV model). Then for each ai ∈ A
we can define Tai(s, s

′) = T (s, ai, s
′) and pre-compute the BDDs for each action

ai

[[Tai
]] = [[T ]][a := ai]

and we have

[[EαX φ]](s) = ∃s′.
∨

a|=α

[[Ta]](s, s′) ∧ [[φ]](s′)



6 Using ARCTL for Knowledge Logics

CTLK is a logic to reason about time and knowledge in a system of agents.
Besides the temporal logic operators of CTL, CTLK offers epistemic (i.e. knowl-
edge) operators, such as KA φ, meaning that some agent A knows that φ holds.
Intuitively, A knows φ if φ holds in all the states that A deems possible according
to his knowledge. Under certain hypotheses, this is formalized as an epistemic
(equivalence) relation over states ∼A that equates states that are indistinguish-
able by A.

CTLK has been introduced in [2], extending the framework appearing in [10].
A model checking tool for CTLK and various examples have been presented
in [11], showing that temporal-epistemic properties may offer a more efficient
characterisation than temporal-only formulae.

6.1 From CTLK to ARTCL

The problem of model checking CTLK can be reduced to the problem of model
checking ARCTL, as follows. In this setting, each agent Agi is associated with
a set of “local” variables vi, so that s ∼Agi

s′ ≡ (vi(s) = vi(s′)), where vi(s) is
the projection of s on vi. Given a CTLK model MK and a CTLK formula φK ,
a MTS M = F (MK) and an ARCTL formula F (φK) can be defined such that
MK |= φK iff F (MK) |= F (φK). The MTS M includes two kind of actions:
an action RUN associated to temporal transitions, and actions Agi (one for
each agent) associated to each epistemic relation ∼Agi

. These actions are used
in the definition of two kinds of transitions of M, either temporal or epistemic.
F (φK) is generated as follows: standard CTL operators in φK are translated into
their ARCTL extensions restricted to RUN actions, and epistemic operators are
translated to ARCTL operators labelled with Agi. For instance

F (EX φ) = ERUNX F (φ)
F (KAgi

φ) = AAgi
X F (φ)

This translation has been implemented as an M4 macro package that allows to
write CTLK models and specifications, to be verified with the modified NuSMV
presented in Section 5.3.

6.2 Experimental Results

We have conducted some early experiments using action-based model checking
for verifying CTLK, in the context of analyzing diagnosability properties. Di-
agnosability is the ability of performing a diagnosis of a given system, knowing
which variables (or events) of the system can be observed. Considering these vari-
ables as the observations of an agent D (the Diagnoser), diagnosability properties
can be phrased as epistemic properties. For example, a fault condition faulty
can be detected if and only if the diagnoser always knows whether the system is
faulty or not:



AG(KD(faulty) ∨KD(¬faulty))

We have carried out experiments on a simple cascaded power distribution
model, illustrated in Figure 2, for various depths of the cascade. This models
features a power source, circuit breakers (CBs) and LEDs (as power sinks),
where the CBs can fail in different ways and only the commands applied to the
CBs and the LED states are observable. We have been able to verify a fairly
large model (240 variables, for a total state space of size ≈ 1070). Despite its
size, this model can be verified in less than 10 minutes thanks to the BDD-
based symbolic encodings used in NuSMV. Notice that the modification of the
NuSMV code and the verification of epistemic properties using the reduction to
ARCTL do not affect the performance of NuSMV: the non-modified version of
SMV obtains similar results in the verification of temporal-only properties for
the CB example.

led1

source cb1

cb2

cb3

cb4

cb6

cb7

cb5

led4

led3

led2

Fig. 2. Sample circuit

7 Related Work

Several authors have already described symbolic model checking algorithms for
action-based logics, along very similar lines to what we describe here. In principle,
after [7] it is sufficient to have a core set of temporal eventualities expressed as
fixpoint formulae to provide the grounds for symbolic model checking.

– In [12, 13], the authors present a variant of A-CTL with an with unless oper-
ators EW and AW and slightly different semantics (and syntax). That logic
is more expressive than classic A-CTL. They give a fixpoint characteriza-
tion using extended operators EX[{α}φ ∨ {α′}φ′] and AX[{α}φ ∨ {α′}φ′],
which slightly extend our EαX and AαX and allow the increased expres-
sivity, but otherwise follows the classical approach used as a basis for CTL
and ARCTL model-checking. They have implemented their approach in the
Efficient Symbolic Tools (EST) package [14], which offers symbolic A-CTL
model-checking for a process-algebra language.



– [15] describe SAM, a symbolic model checker for µ-A-CTL, an extension
of A-CTL with fixpoint operators. SAM uses a BDD-based Boolean system
called BSP. SAM is part of the JACK toolset which uses the process algebra
CCS/Meije to describe models.

Compared to those two systems, the work presented here is at a more pre-
liminary stage but offers two significant contributions: firstly, it considers mixed
systems, reconciling the state-based and action-based schools of formal methods;
second, it is implemented in NuSMV, an open-source, feature-rich, efficient and
widely distributed system with an expressive modelling language.

In a related topic, [16] discuss the encoding of CCS-style process algebras as
BDDs. The authors envision that encoding as a way to enable efficient bisim-
ilarity checking, but action-based temporal logic could equally be applied. [17]
brings this idea one level higher, by proposing a BDD encoding for any process-
algebraic language whose structural operational semantics follow a given pattern
(so-called Simple GSOS Systems).

Regarding the post reduction from mixed to state-based models and formu-
lae, a similar reduction from A-CTL to CTL (and more generally from A-CTL*
to CTL*) is already presented by Nicola and Vaandrager in [5]. That approach
creates additional intermediate states in the KS to represent actions, which com-
plicates the translation of formulae and would double the number of computation
steps when computing fixpoints for symbolic model checking. In contrast, our
post transformation multiplies the state space by the action space, but from a
symbolic model checking standpoint, the number of variables and the depth of
fixpoint iterations is unchanged.

8 Conclusions and Perspectives

Although symbolic model checking of action-based logics is well-understood in
principle and has been implemented in several places, it has so far focused on pure
action-based, process-algebra formalisms with a relatively limited distribution.
This paper presents a step towards making mixed state-based and action-based
reasoning capabilities more widely available, with two complementary contribu-
tions: at the theoretical level, a formulation of the model-checking problem for
mixed models and an associated mixed logic, called ARCTL, that provides a
clean generalization of CTL; at the practical level, two prototype implementa-
tions of mixed-logic model-checking in the mainstream symbolic model-checker
NuSMV.

The initial motivation for this work arose from a need to perform model
checking of logics with modalities on both the temporal evolution of the system
and the knowledge (or beliefs) of agents in the system. Under some assumptions,
this can be reduced to a mixed-logic model-checking problem. Our initial exper-
iments in checking the epistemic temporal logic CTLK with NuSMV based on
that reduction provided successful and encouraging results.

The work presented here can be extended in a number of ways:



– The treatment of internal (invisible) actions needs to be investigated. Essen-
tially, this amounts to considering weak variants of temporal operators that
ignore a distinguished τ action. This should not cause major technical issues,
as fixpoint characterizations for such operators are well-known (see e.g. [6]),
but the precise formalization and implementation need to be worked out.

– Fairness needs to be reconsidered. As we have seen in Section 3.4, the notion
of fair path used for CTL is not appropriate with finite traces. Instead,
action-based theories commonly define fairness in terms of not indefinitely
refusing enabled actions [19]. How this can be addressed in symbolic model
checking is a matter to be investigated.

– On the implementation side, support for generation of counter-examples
needs to be addressed, which should require minimal technical changes in
NuSMV. Partitioning the transition relation between a set of actions is a
more significant and more involved change that we would also like to ad-
dress.

– We are currently investigating the feasibility of bounded model checking for
action-based logics, which offers a very efficient technique for finding counter-
examples, but it is currently supported by NuSMV for the verification of
linear temporal logic (LTL) only.

– Support for other action-based logics such as A-CTL could easily be added,
either as additional macro packages or as native extensions of SMV. Game-
theoretic logics such as ATL [20] would be a very valuable addition but would
require a deeper analysis and more involved changes to NuSMV.

A more thorough experimental assessment of the current prototype and its
future extensions is also desirable, but, as mentioned in Section 6.2 the first
results obtained from the CTLK application are quite encouraging.
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